Сделано в ссср. история развития отечественного компьютеростроения. Советская вычислительная техника. История взлета и забвения Родоначальник первой советской вычислительной машины

Рис. 8. «Электроника БК-0010» - классический вид с цветной плоской клавиатурой, напечатанной на бумаге и покрытой плёнкой (под бумагой - матрица клавиатуры из низкопрофильных кнопок ПКН-150)

Итак, в середине 1984 года в Советском Союзе на прилавках магазинов «Электроника», наконец, появился первый отечественный домашний компьютер - . Стоил он сначала 540, затем 600 рублей - примерно как цветной телевизор или хороший музыкальный центр, что было не дёшево, но вполне доступно для большинства населения. Надо сказать, к этому времени люди, увлекающиеся вычислительной техникой, из книг и журналов уже хорошо знали, что такое ПК и зачем он может быть нужен, поэтому интерес к БК-0010 был велик. А когда в 1986 году главный советский научно-популярный журнал «Наука и жизнь» начал публиковать материалы о БК-0010, о нём узнали буквально миллионы читателей. С другой стороны, не нужно преувеличивать спрос на такие ПК в те годы и их значение - большинство людей вполне логично воспринимали их просто как дорогую игрушку, не имеющую серьёзного практического применения. Но для любителей-энтузиастов появление в продаже домашних компьютеров стало важнейшим событием.

Рис. 9. БК-0010: 44 микросхемы, ПЗУ с Фокалом и МСТД в панельках (теоретически их легко заменить на другие, более нужные пользователю, программы), основные БИС (процессор и две вентильных матрицы) в дорогих металло-керамических корпусах

Процессор

Давайте, наконец, посмотрим, что представлял из себя этот компьютер. Первое, что следует отметить - это была совершенно оригинальная советская разработка, не имеющая каких-то явных зарубежных прототипов. Второе - это был один из первых в мире полностью 16-разрядный домашний компьютер. Причём во многих источниках написано ещё конкретнее - первый в мире домашний 16-разрадный ПК. То есть у БК был 16-разрядный процессор, 16-разрядное ОЗУ, 16-разрядное ПЗУ и 16-разрядный видеоконтроллер, поэтому и передача данных шла сразу 16-битными словами, и обработка в процессоре тоже выполнялась сразу над 16-ю битами данных; все регистры процессора, естественно, тоже были 16-разрядными. Напомню, в те годы подавляющее большинство недорогих ПК были либо полностью 8-разрядными, либо частично 16-разрядными, поэтому выпуск настоящего 16-разрядного бытового ПК был большим шагом вперёд. Кстати, процессор БК-0010 - знаменитый К1801ВМ1 - содержал 50000 элементов (около 17000 транзисторов), в то время как процессоры 8-разрядных ПК - всего лишь от 3,5 до 8,4 тысяч транзисторов, что уже говорит о явном преимуществе 16-разрядных. Отмечу, что чем больше разрядность процессора, тем быстрее он производит сложные вычисления и в среднем быстрее обрабатываются данные, особенно многоразрядные (16, 32, 64 бита и т.д.), но скорость выполнения простых программ и несложных вычислений непосредственно от разрядности почти не зависит. При этом скорость работы процессора сильно зависит от тактовой частоты и его архитектуры, особенно от способности выполнять несколько команд одновременно (наличия конвейерной обработки). Так вот, процессор БК-0010, представлявший первое поколение 16-разрядных микропроцессоров (МП), как и большинство применявшихся в то время зарубежных 16-разрядных процессоров, на практике по скорости чаще всего мало отличался от типичных 8-разрядных моделей, зато К1801ВМ1 был гораздо удобнее для программиста, поскольку имел чрезвычайно удачную и любимую многими систему команд машины PDP-11. Процессор БК работал на достаточно высокой частоте 3 МГц (причём К1801ВМ1 мог штатно работать на частоте до 5 МГц, а на практике и до 6 МГц), однако сильно тормозился контроллером памяти и дисплея, снижавшим его производительность примерно на 20-30%. В результате максимальная скорость процессора при исполнении программ в ОЗУ была всего 250 тысяч оп/с. Впрочем, 16-разрядная архитектура с удачной системой команд позволяла БК вполне уверенно конкурировать по скорости с типичными 8-разрядными ПК, оснащёнными процессорами с максимальной производительностью 500–1000 тыс. оп/с.

Рис. 10. КР1801ВМ1 - вариант К1801ВМ1 в более дешёвом пластиковом корпусе и без позолоты на выводах (в серии БК использовались обе разновидности - и в пластиковом, и в металло-керамическом корпусе)

ОЗУ и ПЗУ

Кроме процессора, важное значение имеют и другие параметры компьютера: объём оперативной и постоянной памяти, графические и звуковые возможности, особенности клавиатуры, способность работать с внешними устройствами, возможности расширения. По этим параметрам БК-0010 находится на вполне нормальном среднем уровне, не слишком выделяясь в ту или иную сторону от зарубежных аналогов середины 1980-х. А советских аналогов в то время просто не было. Оперативная память (оперативное запоминающее устройство - ОЗУ) имела размер 32 килобайта (Кбайт) и была поровну поделена между видеопамятью, в которой хранилось изображение, выводимое на экран, и памятью для программ пользователя. То есть для хранения программ и данных выделялось всего около 16 Кбайт - это совсем не много, но и не так уж мало: аналогичная ситуация с памятью, а то и гораздо хуже, была и на многих зарубежных домашних ПК. Даже первые IBM PC в самой простой, но отнюдь не дешёвой (1565 долл. без всякой периферии) комплектации имели всего 16 Кбайт ОЗУ, наряду с недорогими вариантами таких популярных ПК тех лет, как ZX Spectrum, Acorn BBC и других. А известнейший Commodore VIC–20 (предшественник Commodore 64), в начале 1980-х первым среди всех ПК преодолевший планку в 1 млн проданных экземпляров, имел всего 5 (пять!) Кбайт ОЗУ. Кстати, главный американский заочный конкурент БК - TI-99/4A (также имевший 16-разрядный процессор), был укомплектован просто издевательским ОЗУ пользователя - всего-навсего 256 байт! Правда, видеопамять у 99/4А тоже 16 Кбайт. Под постоянную память (ПЗУ) в БК-0010 было отведено 32 Кбайта, из которых использовалось обычно лишь 24 Кбайта, то есть установлено 3 микросхемы по 8 Кбайт и одна панелька оставалась пустой - туда при необходимости можно было воткнуть ПЗУ с программами пользователя. Причём два гнезда для ПЗУ (одно из которых пустое) находились под специальной съёмной крышкой, расположенной прямо на передней панели БК слева от клавиатуры. То есть для замены ПЗУ даже не нужно было разбирать корпус. Забегая вперёд, заметим, что и клавиатура БК-0010 предполагала простую возможность замены обозначений клавиш, т.е. разработчики предусмотрели всё, чтобы пользователь мог легко адаптировать его под свои собственные разные задачи, заменяя ПЗУ и даже меняя обозначения клавиш. Впрочем, конечно, подавляющее большинство владельцев БК использовали стандартные ПЗУ из комплекта ПК и совершенно не испытывали потребности в замене раскладки клавиатуры. К тому же, здесь есть ещё одна «маленькая деталь»: сделать собственные ПЗУ для замены штатных было совсем не просто - микросхемы постоянной памяти КР1801РЕ2, использовавшиеся в БК, программировались только на заводе в процессе изготовления кристалла микросхемы (это были так называемые «масочные ПЗУ»), и «прошить» их самостоятельно, с помощью какого-либо программатора, было нельзя; вместо КР1801РЕ2 можно было использовать аналогичные по структуре ППЗУ (программируемые постоянные ЗУ) К573РФ3 с ультрафиолетовым (УФ) стиранием, но они были очень дефицитны и малодоступны; использовать какие-то более распространённые микросхемы (например, популярные 8-разрядные ППЗУ с УФ-стиранием), теоретически, было вполне возможно, но более сложно из-за специфичности архитектуры КР1801РЕ2 и К573РФ3 (они специально рассчитаны на подключение к 16-разрядной шине МПИ).

Посмотрим, что находилось в ПЗУ БК-0010. Главная его часть - программа-монитор и драйверы устройств, занимавшие одну 8-Кбайт микросхему КР1801РЕ2. Здесь находились важнейшие драйверы, обеспечивающие ввод с клавиатуры, вывод на экран, работу с магнитофоном и т. д., а также простая программа-монитор, которая использовалась в основном для загрузки и запуска программ в машинных кодах. Вторая микросхема ПЗУ на 8 Кбайт - это тестово-диагностическая программа, позволявшая проверить работоспособность всех устройств БК. Естественно, на нормально работающем компьютере она была просто не нужна и вообще использовалась очень редко, поскольку с надёжностью у этого ПК особых проблем не было. Наконец, третью микросхему занимал интерпретатор языка Фокал (расшифровывается как «формульный калькулятор», а не «фортран-паскаль», как некоторые думали). Наличие в ПЗУ Фокала вместо уже стандартного в то время Бейсика служило одной из главных мишеней для критиков БК-0010. Действительно, программ на Бейсике уже в то время публиковалось огромное количество, а Фокал был известен даже не всем программистам. Однако сам по себе Фокал считался простым и достаточно удобным языком, позволявшим создавать программы любого назначения. Хотя у него имелись некоторые важные отличия от Бейсика, они были направлены на упрощение программирования, так что освоение Фокала выглядело ничуть не более сложным, чем обучение Бейсику. В общем, владельцы БК быстро привыкали к Фокалу, и особых неудобств от его наличия вместо Бейсика, вроде бы, не испытывали. При этом Бейсик тоже можно было использовать, загружая его в оперативную память с магнитофона. Правда, ОЗУ пользователя итак было невелико, так что в этом случае для программ на Бейсике оставались считанные килобайты.

Использование в БК-0010 Фокала вместо Бейсика являлось большой загадкой для всех его владельцев. Однако всё объясняется просто: дело в том, что на момент начала выпуска БК для подобных ПК уже был почти подходящий интерпретатор Бейсика - так называемый Бейсик-ДВК (версия, адаптированная для компьютеров ДВК), но он отличался чрезвычайно низкой скоростью работы и отсутствием поддержки графики. Вряд ли разработчиков БК сильно смутила скорость работы, скорее они просто не смогли уместить эту версию Бейсика, переделанную для БК с добавлением графических и других команд, в 8 Кбайт ПЗУ. В то же время, для PDP-совместимых компьютеров существовала версия интерпретатора Фокала размером около 6 Кбайт, которая была расширена простейшими функциями работы с графикой и магнитофоном, и даже после этого легко поместилась в 8 Кбайт ПЗУ вместе с полными текстами сообщений об ошибках и краткой справкой об управляющих клавишах, командах и функциях Фокала. К тому же программы на Фокале работали примерно на треть быстрее, чем программы на Бейсике ДВК. В этих условиях разработчики БК-0010 приняли в 1983 году самое простое решение - не пытаться создать новый Бейсик размером до 8 Кбайт или отвести под него уже 16 Кбайт, либо как-то ужать существующий Бейсик-ДВК (а он уже был очень упрощённой версией), а взять уже готовый, очень компактный интерпретатор Фокала. Впрочем, разработку нового транслятора Бейсика специально для БК всё же заказали Вильнюсскому госуниверситету, и в 1985 году вышла первая его версия размером 9 Кбайт для загрузки в ОЗУ БК с кассеты, а в 1986 году - 24-килобайтная версия для размещения в ПЗУ. О вильнюсском Бейсике речь также пойдёт несколько ниже.

Графика и звук

Теперь давайте посмотрим на изобразительные возможности БК-0010. Он имеет чисто графический экран с двумя основными разрешениями: 256 строк по 512 точек в строке и 256 строк по 256 точек. Первое поддерживает только 2 цвета для любой точки, второе - 4 цвета, причём эти цвета постоянны - чёрный, красный, зелёный и синий. Белый цвет в цветном режиме не отображается. Программируемой палитры нет. Специального текстового режима с минимальным объёмом видеопамяти нет - как и на многих других ПК, символы выводятся в графическом режиме в виде маленьких картинок (а это значит, что есть возможность без проблем показывать на экране любые символы любых алфавитов). На экране отображается 24 строки по 32 или 64 символа в строке, вверху экрана есть также служебная строка, на которой выводятся текущие режимы работы и подсказка о назначении «функциональных» клавиш. Имеется достаточно редкая для того времени функция аппаратного плавного вертикального скроллинга - прокрутки экрана.

Вообще, БК имеет два видеовыхода - цветной RGB для подключения цветного монитора или телевизора (ТВ) и чёрно-белый композитный - для подключения чёрно-белого монитора или ТВ. Правда, во многих БК выход RGB на заводе почему-то не устанавливался, и его приходилось допаивать уже самому владельцу ПК. Высокое разрешение 512 × 256 нормально поддерживалось только чёрно-белым выходом, а при подключении через цветной изображение на экране в таком разрешении приобретало странный вид с непонятными цветными контурами и точками. При этом разобрать надписи можно, но нормальной такую работу не назовёшь. Владельцам цветных телевизоров приходилось подключать БК двумя кабелями - один от чёрно-белого выхода БК к композитному входу телевизора, а другой - от цветного выхода БК к RGB-входу ТВ, а в процессе работы переключать входы в зависимости от разрешения, используемого в программе. Впрочем, большинство программ, особенно игр, задействовало только цветной режим с разрешением 256 × 256, и частое переключение не требовалось. К тому же при работе в Фокале, Бейсике или системном мониторе можно было с клавиатуры быстро переключать разрешение экрана, приводя его к нужному виду.

Рис. 12. БК-0010: разъемы питания, параллельного интерфейса, выхода на ч/б телевизор или монитор, шины МПИ и магнитофона; выход RGB (для цветного изображения) отсутствует, как и у многих других экземпляров БК (разъем и несколько других недостающих деталей можно было впаять на плату самостоятельно, также надо было проделать и недостающее отверстие в корпусе для него)

Кстати, подключить БК, как и почти любые другие отечественные ПК, к цветному телевизору в цветном режиме было не так-то просто: большинство телевизоров не имели никакого RGB-входа, хотя на многих моделях его установка была предусмотрена. Это было вызвано тем, что до массового появления домашних ПК к видеовходам просто-напросто нечего было подключать. А те устройства, вроде видеомагнитофонов или игровых телеприставок, которые работали в паре с телевизором, почти всегда имели самый обычный антенный выход, подключавшийся соответственно к антенному входу любого ТВ. В общем, владельцам БК либо приходилось делать несложную доработку своих телевизоров либо лицезреть даже на цветном телевизоре только чёрно-белое изображение.

Нужно заметить, что на БК был ещё так называемый режим расширенной памяти (РП), в который можно было быстро переключиться с клавиатуры. В этом режиме для вывода изображения отводилась только верхняя четверть экрана, зато ОЗУ пользователя расширялось до 28 Кбайт. То есть была возможность при необходимости сильно увеличить длину программ, не требующих задействования всего экрана - например, для каких-то сложных расчётов или баз данных и т. д. Интересно, что некоторые программы вроде копировщиков файлов использовали часть экранной памяти для хранения программ и данных и без перехода в режим РП - тогда на экране появлялись области «шума» из случайных точек случайного цвета.

Звуковые способности у БК-0010 самые обычные - никакого специального звукогенератора, звук воспроизводится чисто программно изменением бита в регистре (точнее, 2-х битов). Такое решение было очень характерно для многих советских и зарубежных ПК того времени. Встречались даже компьютеры совсем без звука - например, «Роботрон-1715» (ГДР). Конечно, звучание такого синтезатора, как правило, было совсем простым - обычно одноголосный звук с прямоугольной волновой формой одинаковой амплитуды и всё. Хотя при более хитрых алгоритмах вывода звука на БК можно было синтезировать и многоголосную музыку и шумовые эффекты и даже имитировать изменение громкости. Кроме того, использование специального встроенного аппаратного таймера БК позволяло также получить интересные звуковые эффекты. Однако в моменты воспроизведения звука процессор БК, как правило, был полностью загружен, поэтому вывод звука в процессе игры сильно тормозил работу, а о постоянном звучании музыки в игре речи обычно вообще не шло. В некоторых играх музыка всё же звучала, но выводилась она короткими фрагментами (в промежутках между которыми процессор успевал выполнять другие задачи вроде перемещения объектов на экране) или использовались более сложные алгоритмы, задействующие встроенный таймер и т.д.

Клавиатура

Ещё один интересный момент - клавиатура БК-0010. Самый первый вариант БК снабжался так называемой мембранной клавиатурой, представлявшей собой совершенно ровную поверхность с отпечатанными обозначениями клавиш. Под рисунком каждой клавиши в некотором углублении находятся контакты, которые замыкаются довольно сильным нажатием пальца. Эта конструкция, как и на других ПК, использовавших подобный вариант клавиатуры (например, Atari 400), сильно отличалась от привычных объёмных клавиш типа пишущей машинки и вызывала много нареканий. В результате производители БК через некоторое время заменили мембранную клавиатуру на другой вариант, внешне похожий, но внутри заметно отличный: вместо мембранной плёночной клавиатуры были установлены нормальные кнопочные переключатели с невысокими пластиковыми площадками-толкателями, а сверху всё это было накрыто бумажным листом с цветными обозначениями клавиш и прозрачной защитной плёнкой. Работать с такой клавиатурой было намного приятнее, хотя опять же привычной тактильной связи, характерной для объёмных клавиш, здесь не было - поверхность клавиатуры была совершенно гладкая, да и ход клавиш был совсем небольшой. Тем не менее, этот вариант оказался достаточно удачным и надёжным. Общее количество клавиш - 86 штук, что очень даже немало. К примеру, у знаменитого ZX Spectrum их было всего 40. При этом у БК клавиши разного назначения выделены разными цветами.

Рис. 13. Чрезвычайно функциональная клавиатура БК-0010: 86 кнопок разного назначения, множество клавиш для редактирования текста и выбора режимов, на буквенных клавишах нанесены также символы псевдографики

Бросается в глаза не только весёленькая расцветка клавиатуры, но и большое количество непривычных и загадочных клавиш с русскими обозначениями: ГРАФ, ШАГ, ПОВТ, БЛОК РЕД, ИНД СУ, ЗАП, УСТ ТАБ, СБР ТАБ, ВС, ГТ и т. д. А ведь все они выполняли какие-то важные функции, иначе зачем было их выносить на клавиатуру в качестве отдельных кнопок. Например, кнопка ГРАФ переводит ПК в режим непосредственного рисования на экране, когда вместо привычного текстового появляется «графический» курсор, который можно перемещать с помощью стрелок, а кнопками ЗАП и СТИР включать режимы записи или стирания, чтобы курсор оставлял след (можно выбрать нужный цвет) или стирал ранее нарисованное. То есть разработчики БК предусмотрели даже простейший графический редактор, встроенный в ПЗУ, и этот «редактор», несмотря на примитивность, оказался очень полезен - он активно использовался для ввода в ПК даже весьма сложной графики (обычно она сначала рисовалась на миллиметровке или школьной тетради в клетку, а перевести её по точкам на экран было уже совсем просто, причём необходимости использовать более сложный графический редактор часто просто не было). Кнопки УСТ ТАБ и СБР ТАБ позволяют устанавливать или удалять на экране произвольные позиции табуляции (тоже весьма полезная функция), ГТ перемещает курсор на 8 позиций вправо, ШАГ позволяет выполнять программу на Фокале или Бейсике пошагово (очень удобно при отладке программ), ИНД СУ включает отображение на экране управляющих символов (аналог кнопки “Пи” в современном MS Word). Кнопка ПОВТ служит для повтора последней нажатой клавиши (автоповтора при долгом удержании кнопки у БК в стандартном режиме не было). Кстати, особенностью контроллера клавиатуры БК было то, что он не мог отслеживать несколько одновременно нажатых кнопок - код клавиши выдавался только один, что несколько затрудняло управление в играх. Впрочем, при использовании нестандартных приёмов можно было определить и несколько нажатых клавиш. К тому же почти во всех играх был предусмотрен выбор клавиш самим пользователем. А ещё в играх здорово помогал джойстик, который в этом случае, конечно, был намного удобнее клавиатуры.

Надо сказать, разработчики компьютера довольно быстро отреагировали на критику пользователей и в 1986 году создали усовершенствованный вариант БК под названием БК-0010-01, в котором исправили два наиболее спорных момента: во-первых, наконец, поместили в ПЗУ Бейсик вместо Фокала, а во-вторых, поменяли клавиатуру на привычный вариант с объёмными полноходовыми кнопками. При этом клавиш стало несколько меньше - 74 и качество клавиатуры вызвало не меньше замечаний, чем у первых моделей. Дело в том, что клавиши БК-0010-01 имели не слишком удачную конструкцию и были очень подвержены такому явлению, как «дребезг контактов», когда при однократном нажатии кнопки выдаётся несколько одинаковых символов. Эта проблема в большей или меньшей степени присутствует во всех типах клавиатур, но обычно легко решается программным или аппаратно–программным способом. К сожалению, у БК-0010-01 предусмотренные конструкторами меры по защите от дребезга контактов оказались недостаточными, и в этом плане новая клавиатура была явно хуже старой. Впрочем, пользователи БК, как могли, сами решали эту проблему, переделывая разными способами клавиатуру или просто работая на ней короткими чёткими ударами. Интересно, что в новой модификации БК была убрана съёмная крышка на передней панели для быстрой замены ПЗУ, да и возможность замены обозначений клавиш тоже пропала со сменой типа клавиатуры - то есть возможности адаптации компьютера под задачи пользователя несколько снизились. Видимо, это было сделано в связи с очень малой востребованностью этих функций в реальной жизни.

Рис. 14. БК-0010-01: вариант с надёжной плёночной клавиатурой (современного типа); от клавиатуры с механическими кнопками отличается ровными (без выступов) боковыми сторонами

Рис. 15. БК 0010-01: «дешёвый» вариант - все микросхемы в пластиковых корпусах. ПЗУ без панелек. 45 микросхем (на одно ПЗУ больше, чем у БК-0010)

Бейсик в ПЗУ БК-0010-01 занимал целых 3 микросхемы - 24 Кбайта и представлял собой так называемый вильнюсский Бейсик, разработанный в середине 1980-х в Вильнюсском университете - очень интересный вариант транслятора компилирующего типа, позволявший выполнять многие программы в разы или даже в десятки раз быстрее, чем это делали интерпретаторы Фокала или Бейсика ДВК. При этом для пользователя работа с таким транслятором почти ничем не отличалась от работы с обычным интерпретатором. Бейсик БК был очень развитой версией, аналогичной стандарту MSX (M achines with S oftware eX changeability) и поддерживающей почти все его графические и другие операторы, способный работать с целыми числами, а также вещественными одинарной и двойной точности. Правда, были у вильнюсского Бейсика и недостатки - например, невозможность размещения нескольких операторов в одной строке и большие требования к объёму памяти. Первое ограничение - один оператор в строке - было очень странным и необъяснимым (тем более, что упрощённая 9-килобайтная версия этого же Бейсика, предназначенная для загрузки в ОЗУ, позволяла писать несколько операторов в строке!), а с памятью ситуация была такая: поскольку Бейсик БК после подачи команды RUN (запуск на исполнение) сначала транслировал программу в особый промежуточный код, который затем исполнялся гораздо быстрее, чем это делали классические интерпретаторы, получается, что в памяти БК должны были храниться как исходный текст программы, так и как бы скомпилированный вариант или, по крайней мере, нужно было резервировать место под скомпилированную программу. В общем, программа на Бейсике могла занимать лишь половину пользовательской памяти БК, а фактически даже меньше - порядка 7 Кбайт, ведь нужно было ещё оставить место под переменные и служебные данные. При этом программа на Фокале могла занимать порядка 15 Кбайт. Так что ситуация с памятью у Бейсика БК была очень странная - максимальная длина программы на Бейсике была в 3 с лишним раза меньше, чем размер самого транслятора Бейсика. С другой стороны, 7-ми Кбайт всё же хватало для составления почти любых учебных программ, а также для многих расчётов и даже вполне приличных игр. К тому же не следует забывать о режиме расширенной памяти, позволявшем увеличить размер программ почти в 2 раза за счёт уменьшения видеопамяти.

Рис. 16. Фрагмент программы на Вильнюсском Бейсике БК-0010-01: в цветном режиме цвет текста по умолчанию - красный (белый в этом режиме у БК отсутствует), сверху - служебная строка с индикаторами текущих режимов работы (загадочные символы слева - это «подсказки» назначения «функциональных» клавиш (на БК называемых «ключами»), т. е. первые буквы операторов Бейсика, вводимых при нажатии на «ключи» К1-К10)

Для совместимости с первым вариантом БК в комплекте БК-0010-01 поставлялся специальный блок МСТД, подключаемый к системному разъёму и содержащий две микросхемы ПЗУ - с Фокалом и тестово-диагностической системой. Таким образом, объём ПЗУ у БК-0010-01 мог быть до 48 Кбайт (но одновременно использовалось не более 32-х) - в 2 раза больше, чем у прежнего БК-0010.

Рис. 17. Клавиатура у БК 0010-01 более традиционная - с объемными кнопками. Клавиш 74 - на 12 меньше, чем у БК-0010, и на основных клавишах нет символов псевдографики

Интересно, что выпуск усовершенствованного варианта БК-0010-01 вовсе не означал автоматического прекращения производства старого. Оба компьютера - БК-0010 и БК-0010-01 - несколько лет выпускались одновременно. При этом вариант -01 был на 50 рублей дороже - он обычно стоил 650 рублей (а в самом начале 1990-х - 750 руб).

О памяти, звуке и периферии

Ещё несколько слов об оперативной памяти БК. Конечно, её объём был маловат для работы с большими программами или стандартными операционными системами, но создатели программ очень активно использовали драйверы устройств и знакогенератор, находящиеся в ПЗУ всех версий БК, что позволяло сократить размер программ на несколько килобайт. Стандартное, несменяемое ПЗУ БК-0010 содержало драйверы вывода текста на экран, рисования точек и линий, ввода с клавиатуры, чтения с магнитофона и записи на него и другие. Оно же содержало и графические образы всех символов, отображаемых на экране. Это значительно облегчало задачу программиста и сокращало требования к объёму ОЗУ. Впрочем, возможность задействования ресурсов штатного ПЗУ активно использовалась и на других ПК (например, на «Спектруме»), но не на всех – скажем, у «Вектора-06Ц» в ПЗУ никаких драйверов устройств и знакогенераторов просто не было, всё это должно было загружаться в ОЗУ, являясь составной частью любой программы, и это несколько сокращало, так сказать, полезный объём ОЗУ пользователя и увеличивало на несколько килобайт размер программ. С другой стороны, по этой причине в большинстве программ и игр на БК используется одинаковый шрифт и очень похожее оформление заставок игр, в то время как на «Векторе» оформление гораздо разнообразнее.

О выводе звука создатели ПК того времени особо не заботились - в советских компьютерах не было ни выхода на наушники, ни специального линейного выхода. В каждом ПК был маленький, но довольно громкий динамик или пьезодинамик, а для получения большей громкости и лучшего качества использовался магнитофонный разъём ПК, куда поступал звук не только с магнитофонного выхода, но и с выхода отдельного звукосинтезатора, если он был. К этому разъёму легко подключался любой усилитель, но чаще всего в его роли выступал тот же магнитофон, который ставился на паузу в режиме записи. Соответственно, наушники подключались уже к магнитофону или усилителю.

К концу 1980-х годов для БК-0010 выпускалось несколько дополнительных устройств, расширяющих его возможности – например, джойстики для игр, манипулятор «мышь» под романтичным названием “Марсианка”, простой многоголосный музыкальный синтезатор “Менестрель”, контроллер флоппи-дисководов и даже компактный рулонный графопостроитель.

Рис. 18. Отличный герконовый мини-джойстик (серийная модель), оснащённый специальным разъемом для подключения к БК

БК-0011 и БК-0011М

Советские покупатели домашних ПК были, как правило, людьми образованными и прекрасно осведомлёнными о зарубежных достижениях в этой сфере. Они вовсе не были на всё согласными и неразборчивыми потребителями - наоборот, наши пользователи близко к сердцу принимали любые недостатки отечественной техники и с удовольствием слали разработчикам и изготовителям первых ПК свои замечания и предложения по их усовершенствованию. Главными недостатками БК считались малый объём ОЗУ, малое число отображаемых цветов, сравнительно медленный процессор, нестандартная клавиатура и наличие в ПЗУ Фокала вместо Бейсика. Как уже упоминалось, часть этих недостатков было исправлено в 1986-87 году выпуском БК-0010-01. В те же годы была разработана и значительно усовершенствованная модель , имеющая в 4 раза большее ОЗУ - 128 Кбайт (при этом ОЗУ пользователя (96–112 Кбайт) - в 6-7 раз больше, чем у БК-0010!), более высокую тактовую частоту (4 МГц вместо 3-х), контроллер флоппи-дисководов, два экранных буфера по 16 Кбайт и разные варианты цветовой палитры.

Рис. 19. БК-0011 - внешне практически полная копия БК-0010-01 (но опять появилась сдвижная крышка над панельками с ПЗУ)

Рис. 20. Основная плата БК-0011: 57 микросхем (на 12 больше, чем у БК-0010-01), всего одна панелька для пользовательского ПЗУ

Однако, по имеющимся данным, серийный выпуск БК-0011 начался только в 1989 году, причём через год она была заменена на БК-0011М - модель, имевшую улучшенную совместимость с БК-0010. Внешне БК-0011 была копией БК-0010-01, но внутри отличия довольно большие. К сожалению, вопреки ожиданиям многих пользователей, в новой модели не было существенных изменений графических возможностей – ни увеличения числа одновременно отображаемых цветов до 16, ни программируемой палитры. Разработчики добавили только выбор одной из 16-ти фиксированных палитр и второй кадровый буфер.

Рис. 21. Загадочный набор палитр БК-0011/0011М: хорошо видно, что во всех палитрах нулевой цвет всегда чёрный, в четырёх палитрах используются лишь два цвета (включая чёрный), две палитры полностью одинаковы, синий цвет задействован только в двух палитрах. Заметим, что нулевая палитра (первый столбец слева) – это все цвета, доступные на БК-0010/0010-01. Спасибо Алексею Морозову (vinxru) за наглядное отображение палитр БК-0011/0011М

То есть графика в программах для БК-0011/0011М стала заметно разнообразнее - в частности, появился-таки белый цвет в цветном режиме! - но радикального её улучшения не произошло. Впрочем, в плане графики БК-11/11М среди массовых советских домашних ПК уступали только «Вектору-06Ц», ПК8000 и, отчасти, клонам «Спектрума» - остальные компьютеры одновременно отображали либо те же 4 цвета, либо 8 цветов в низком разрешении, либо имели монохромную графику (белое на чёрном), либо вообще не имели графического режима.

Рис. 22. БК-0011М: никаких заметных отличий в дизайне от БК-0010-01 и БК-0011. Как и у других моделей БК, корпус, в зависимости от завода-изготовителя, мог быть не только традиционно чёрным: у разных моделей встречались также светло-серый, бежевый и тёмно-коричневый.

Рис. 23. Внутренняя конструкция БК-0011М: рядом с клавиатурой находится дополнительная плата с основной частью микросхем ПЗУ и пустыми панельками под ПЗУ пользователя

Рис. 24. Плата БК-0011М внешне полностью аналогична плате БК-0011. В пустое синее гнездо ПЗУ на левом краю основной платы вставляется разъем шлейфа модуля дополнительного ПЗУ (слева на снимке)

Рис. 25. Контроллер дисководов на основе БМК К1801ВП1-128 и ПЗУ с загрузчиком ОС К1801РЕ2-326, входивший в стандартный комплект БК-0011 и БК-0011М с момента их появления в 1989 году, вызвал бурный рост разработок дисковых операционных систем для БК и стал основой для множества других вариантов, которые могли содержать статическое ОЗУ (объемом 8 или 16 Кбайт) вместо ПЗУ, либо и ОЗУ, и ПЗУ вместе и т. д. Фото Н.Зимина

Внешняя память

В качестве внешнего запоминающего устройства в первые годы жизни БК-0010 использовались обычные бытовые магнитофоны. Стандартная скорость записи выбрана достаточно высокой – 1200 бит в секунду (у многих зарубежных ПК 1980-х она в 2-4 раза ниже), то есть загрузка программ занимала примерно 1–2 минуты, и это было вполне терпимо. Причём в этой части конструкции разработчики БК-0010 использовали оригинальное решение – для вывода на магнитофон задействовалось 2 бита выходного регистра (т.е. фактически 2-битный ЦАП), а не один, как у всех остальных ПК. Это позволяло использовать для записи на магнитофон как минимум три уровня сигнала, а не два, как обычно, что увеличивало надёжность хранения данных за счёт использования для более коротких импульсов более высокого уровня сигнала. Вообще, на одну 60-минутную кассету при стандартной скорости записи помещалось около 500 Кбайт данных - а это порядка 30–50 типичных программ. Кроме обычного формата записи энтузиастами было создано несколько так называемых турбо-копировщиков, позволявших увеличить скорость записи в несколько раз. Соответственно увеличивалась ёмкость кассеты и уменьшалось время загрузки программ. В общем, магнитофоны и кассеты в качестве средств хранения программ и данных были не таким уж плохим вариантом, поскольку магнитофон итак был практически в каждом доме, а кассеты тогда стоили гораздо дешевле дискет и были гораздо доступнее. Правда, использование магнитофона для разработки программ сильно замедляло и усложняло этот процесс, и здесь уже дисковод для гибких магнитных дисков оказывался более чем кстати. Возможность подключения БК к дисководам реализована в конце 1980-х годов, и в короткое время для БК было создано или адаптировано не меньше десятка дисковых операционных систем. Впрочем, дисководы тогда стоили очень дорого – нередко в разы больше самого ПК. Например, цена обычного 5,25-дюймового привода в магазинах «Электроника» достигала 1500–2000 рублей. Поэтому большинство владельцев БК и в 1990-е годы продолжали пользоваться магнитофонами и кассетами.

Рис. 26. Заставка ANDOS (с крутящейся трёхмерной надписью!) - популярной операционной системы для БК-0010-01, а также БК-0011 и БК-0011М (ANDOS была удобна тем, что имела формат дисков, совместимый с IBM PC, что позволяло легко обмениваться файлами между БК и PC-совместимыми ПК)

Рис. 27. Заставка MK-DOS - ещё одной популярной ОС для семейства БК-0010/0011, вышедшей одной из последних для БК: в 1992 году (заставка недвусмысленно копирует логотип MS Windows); MK-DOS, в отличие от ANDOS, несовместима по формату дискет с IBM PC, зато совместима с несколькими другими ОС для БК; для работы с файлами в MK-DOS также используется файловый менеджер, аналогичный Norton Commander

Рис. 28. Файловый менеджер ANDOS: как и большинство других файловых оболочек тех лет, внешне копировал суперпопулярную программу Norton Commander для IBM-совместимых ПК

Программы

Во многих статьях о БК-0010 в 1980–1990-е критиковалось отсутствие в комплекте поставки большого количества программ или сложность их приобретения. Это, в общем-то, обычная проблема для любых только что выпущенных компьютеров, и БК, конечно, не был исключением. Хотя программы активно разрабатывались профессиональными программистами и энтузиастами, приобрести их поначалу было непросто, поскольку заводам-изготовителям это было не очень-то интересно (их профиль – выпуск электронной техники, а не тиражирование программ на кассетах), а фирм-распространителей программ для домашних ПК в середине 1980-х ещё просто не существовало. Тем не менее, владельцы этих компьютеров, конечно, с самого начала обменивались программами и информацией, а к концу 1980-х появились кооперативы, занимающиеся тиражированием и распространением ПО для БК-0010 и других домашних компьютеров, причём к этому времени для БК уже было создано огромное количество программ самого разного назначения, в том числе, естественно, игр, обучающих программ, системных и прикладных. Например, на БК встречалось как минимум три версии Бейсика – вильнюсский вариант в ПЗУ объёмом 24 Кбайт, его сокращённая версия объёмом всего 9 Кбайт для загрузки в ОЗУ (для варианта БК, имеющего в ПЗУ Фокал вместо Бейсика) и чистый интерпретатор Бейсик-ДВК. Из языков программирования, соответственно, был также популярен Фокал в ПЗУ объёмом 8 Кбайт, для которого создавались полезные расширения (Focod, XFocal) и даже компиляторы. Другая интересная разработка, ориентированная в основном на сферу образования - так называемый, Т-язык, интерпретатор которого позволял создавать довольно быстрые и красочные обучающие, демонстрационные и игровые программы. На БК были и трансляторы таких языков, как Форт и Си. Но, безусловно, главный язык программирования для создания серьёзных программ - это Ассемблер, родной язык микропроцессора ПК, и для него существовало множество различных трансляторов, в том числе объединённых с редактором текста, а также дизассемблеры и отладчики. Кстати, система команд процессора БК-0010, как и других моделей на основе архитектуры PDP-11, считается одной из наиболее удобных, универсальных и эффективных. Поэтому программирование на Ассемблере БК достаточно просто осваивалось не только программистами, но и любителями-энтузиастами, что позволило в достаточно короткие сроки создать для БК большую библиотеку ПО. Сильно упрощало разработку программ и наличие в ПЗУ компьютера стандартных драйверов ввода-вывода с доступом через программное прерывание EMT. Причём использование этих драйверов было подробно описано в документации, идущей в комплекте к каждому БК. Много хороших игровых, обучающих и прикладных программ создано и на вильнюсском Бейсике, который, будучи как бы полукомпилятором, отличался очень высокой скоростью выполнения простых операций, особенно с целыми числами. При этом в программах на Бейсике часто использовались также и подпрограммы в машинных кодах, позволяющие ещё больше ускорить какие-то важные действия вроде вывода графики на экран.

Для БК известно более 800 игр на Ассемблере, а также множество - на Бейсике и Фокале. Общий уровень игр высокий, очень много игр оригинальных или почти оригинальных, а не «содранных» один в один с популярных иностранных компьютеров. Отмечу, что, если первые игры для БК часто были чёрно-белыми, особенно те, что перенесены с компьютеров ДВК, то к концу 1980-х программисты уже вовсю использовали цветовые возможности ПК, создавая красочные заставки, задействуя псевдоцвета (смешивая основные цвета в шахматном порядке или полосами и т.п.) для преодоления ограничения в 4 отображаемых цвета, программно реализуя цветные «спрайты» с точным наложением на сложный фон.

БК: итоги

Подводя итоги в рассказе о первом советском бытовом компьютере «Электроника БК-0010», давайте ещё раз отметим его сильные и слабые стороны.
Сильные стороны. В целом, компьютер получился, безусловно, удачный. Симпатичный и компактный корпус, высокое качество изготовления, полностью 16-разрядная архитектура с очень удобной системой команд микропроцессора - это однозначные плюсы.
Недостатки и спорные моменты. Небольшой объём ОЗУ и малое число отображаемых цветов – с одной стороны, конечно, минус, особенно для конца 1980-х и начала 1990-х, хотя в начале 1980-х такая память и такие графические возможности были вполне обычными и на других ПК. С другой стороны - памяти-то могло быть ещё меньше (как у некоторых популярных зарубежных ПК начала 1980-х) и хорошо, что поддержка цвета и графики вообще предусмотрена разработчиками БК, поскольку в те годы вполне обычными были и компьютеры вовсе без графики и цвета, с чисто текстовым монохромным экраном, как, например, знаменитые TRS-80, Commodore PET или Sinclair ZX81, или, позднее, отечественные ПК на основе «Радио-86РК». Использование в ПЗУ Фокала вместо Бейсика в первых вариантах БК - также для кого-то недостаток, но можно воспринимать это и как одну из «изюминок» нашего первопроходца, отличавшую его от большой массы зарубежных аналогов, всех как один оснащённых Бейсиком.

Сравнение с западными ПК

Сравнивая БК-0010 с иностранными домашними компьютерами того времени, можно заметить, что по всем параметрам он выглядит вполне достойно, и широко распространённый миф о какой-то «отсталости» и неоригинальности советских компьютеров в этом случае абсолютно не подтверждается. Если посмотреть на широко известные иностранные ПК, появившиеся примерно в то же время, т. е. в 1982–1984 годах, то ничего сверхъестественного мы не увидим - ни каких-то мощных процессоров, ни огромного объёма памяти, ни невероятной графики. В качестве процессоров использовались всё те же 8-разрядные модели, что и в середине-конце 1970-х, с тактовой частотой от 1 до 4 МГц, в среднем мало отличавшиеся по скорости от 16-битного процессора БК-0010 с частотой 3 МГц. Оперативная память составляла от 8 до 64 Кбайт (чаще всего от 32 до 64) , видеопамять - от 6 до 20 Кбайт, ПЗУ - от 16 до 32 Кбайт. У БК, напомню, оперативная память была 32 Кбайт, видеопамять - 16 Кбайт, ПЗУ - 24 (БК-0010) или 32–48 (48 - у БК-0010-01 с блоком МСТД) Кбайт, то есть никаких отличий в худшую сторону от среднего зарубежного уровня у БК мы не видим, скорее наоборот. С графическими возможностями ситуация интереснее: с одной стороны, многие «иностранцы» в те годы уже поддерживали более многоцветную графику - обычно 8 или 15–16 цветов, вместо 4-х у БК, но графика значительной части зарубежных ПК была ориентирована исключительно на игры, как, например, у Commodore 64, Atari или MSX, к тому же отличаясь большими ограничениями в плане разрешения экрана и произвольного выбора цветов точек. К примеру, у знаменитого ZX Spectrum при доступных 15 цветах есть очень серьёзные ограничения, связанные с атрибутной структурой цветного изображения - в каждом знакоместе экрана размером 8 х 8 точек (а это 64 точки) можно использовать лишь 2 цвета, что приводит к полной неспособности выводить детализированное многоцветное изображение. В результате из-за сложности формирования динамичной цветной картинки многие игры для него имели просто двухцветное игровое поле, т.е. фактически монохромную графику, а в неигровой сфере графика «Спектрума» отличалась ярко выраженным так называемым блочным эффектом, когда при выводе сложной картинки вместо чётких разноцветных точек и линий отображались непонятные и совершенно незапланированные цветные квадратики. Похожая проблема есть и у ПК стандарта MSX - у них в графическом режиме тоже подобная атрибутная графика с 15-ю цветами, но размер блока гораздо меньше - 1х8 точек. Здесь при выводе произвольной графики артефакты менее заметны, но также очень даже присутствуют. В то же время БК-0010 имеет меньшее число доступных цветов, зато позволяет свободно выбирать из них цвет любой точки без всяких атрибутных ограничений, что даёт возможность отображать гораздо более чёткую и правильную произвольную графику. Кроме того, те же MSX и ZX Spectrum имеют только одно разрешение экрана и притом невысокое - 256 × 192 точки, а БК поддерживает не только среднее разрешение - 256 × 256, но и высокое - 512 х 256, что очень важно и полезно для серьёзного использования ПК, такого как редактирование текста, работа с таблицами, графиками и т.д. Также можно заметить, что ни MSX, ни «Спектрум» не имеют плавного аппаратного вертикального сдвига экрана, а у БК он предусмотрен, что очень важно, прежде всего, для игровых и некоторых других программ, выводящих динамичную графику (да и просто для работы с текстом). У таких домашних ПК, как Commodore 64 и Atari 400/800/XL/XE графические возможности хорошие, но они полностью ориентированы на игры. В неигровой сфере их способности также сильно ограничены. Скажем, самый распространённый домашний ПК всех времён и народов - Commodore 64 - имел такие параметры отображения графики: при разрешении 320×200 точек в каждом знакоместе 8х8 точек было доступно лишь 2 цвета, произвольно выбираемых из палитры в 16 цветов (т.е. полностью аналогично «Спектруму»); при низком разрешении 160 × 200 точек в каждом знакоместе доступно уже 4 цвета (один из которых общий для всего экрана) - это уже неплохо, но разрешение слишком слабое, с очень заметной пикселизацией; высокого разрешения у «Коммодора 64» вообще не было; кроме того, интерпретатор Бейсика в ПЗУ «Коммодора» совсем не поддерживал никаких операторов для вывода графики - ни точек, ни линий, ни окружностей и т.д. - всё это предлагалось рисовать, ни много, ни мало, записывая соответствующие данные прямо в видеопамять компьютера командой POKE (!). Кстати, игры для С64 и «Атари» также чаще всего использовали сравнительно низкое разрешение порядка 160 × 200 точек (а у «Атари» и меньше), что зачастую делало графику в играх достаточно грубой, простоватой и несовременной, и сравнительно богатая цветовая палитра не могла спасти ситуацию. Еще одна популярная модель (гораздо более дорогая, чем ранее упомянутые) - Apple IIe - имела также странные параметры графики: хорошее основное разрешение 280 × 192 точки при 6 цветах, но с особыми ограничениями на выбор цветов, привязанными к американскому стандарту цветного телевидения NTSC. Качество цветной графики у неё как в играх, так и в неигровой сфере обычно было достаточно примитивным. Даже текст на цветном мониторе у Apple II выводился с очень заметными цветными помехами. Наконец, даже у появившихся в 1983 году довольно дорогих IBM PC/XT основными видеокартами были CGA, отображавшими в цветном графическом режиме одновременно лишь 4 цвета, правда с возможностью выбора из двух или трёх палитр, но подбор цветов в палитрах вызывал ещё больше вопросов, чем у БК. Кстати, процессор у PC/XT (Intel 8088) хоть и относился к классу почти 16-разрядных, но также не показывал выдающихся скоростных данных - во многих тестах PC/XT находился примерно на уровне массовых 8-разрядных моделей.

Как уже говорилось, звуковые способности БК-0010 и БК-0011 достаточно обычные, примерно такие же, как у Apple IIe, ZX Spectrum и IBM PC. Звук воспроизводился чисто программно с существенной загрузкой процессора, поэтому непосредственно во время игры звуковые эффекты, как правило, были минимальными и кратковременными, а музыка играла обычно только на заставках и в паузах. В то же время, игровые зарубежные ПК - такие, как Commodore 64, Atari и MSX - имели более сложные звуковые синтезаторы, позволявшие выводить трёхканальную музыку и эффекты без загрузки процессора, поэтому звуковое и музыкальное оформление игр на этих ПК, безусловно, более богатое. Тем не менее, БК не был чисто игровым ПК, также как, например, и Apple II, и IBM PC, поэтому отсутствие продвинутого звукового генератора для него вполне простительно и оправданно.

Вообще, здесь напрашивается интересная мысль, что БК-0010 и БК-0011 по своим характеристикам действительно ближе к таким универсальным и даже профессиональным компьютерам, как Apple IIe, Acorn BBC и IBM PC, поскольку видеосистема БК также ориентирована на отображение произвольной графики, а не игровой, звуковой генератор также характерен больше для неигровых ПК, да и 16-битный процессор используется примерно такой же, как в отечественных профессиональных ПК и микро-ЭВМ серий ДВК, «Электроника» и других. Соответственно, по большому счёту, такие ПК заслуживают более серьёзного и уважительного отношения, чем компьютеры-игрушки или игровые приставки, ориентированные исключительно на такое интересное, но, к сожалению, абсолютно бесполезное занятие, как компьютерные игры. Впрочем, это, конечно, не значит, что для БК не было игр - очень даже были, и много, и хороших, и часто ничуть не хуже, чем на зарубежных игровых ПК. Но владелец БК мог не только играть, но и, к примеру, заниматься творчеством, составляя программы для рисования на экране цветных графиков, узоров, витражей, фрактальных множеств, клеточных автоматов и т.д. и т.п., получая при этом четкое и детальное цветное изображение (хоть и не многоцветное), а не месиво из цветных квадратиков и прямоугольников, как на ZX Spectrum, MSX или С64.

В целом, можно ещё раз сделать вывод, что БК-0010 был на очень приличном уровне для недорогого домашнего ПК и вполне мог конкурировать с распространёнными 8-битными зарубежными моделями (а 16- и 32-битные зарубежные ПК стоили многократно дороже). Отдельные недостатки БК-0010 - такие, как сравнительно небольшой объём оперативной памяти и малое число отображаемых цветов - были почти исправлены в модели БК-0011/0011М. Программное обеспечение для БК - наиболее развитое среди советских домашних ПК. Вообще, серия БК-0010/БК-0011 была одной из наиболее массовых в СССР, входя в пятёрку самых распространённых в СССР компьютеров (наряду с IBM-совместимыми, Spectrum-совместимыми, УКНЦ и ДВК) - по имеющимся данным, за все годы производства таких компьютеров было выпущено около 160 тысяч. При этом БК использовались не только дома, но и как учебные ПК, а также частично и как профессиональные либо управляющие ЭВМ.

Кто первый?

Наконец, затронем подробнее ещё один интересный момент, связанный с БК-0010 – был ли он действительно первым в мире домашним полностью 16-разрядным ПК? Во многих источниках написано именно так, хотя разобраться досконально в этом вопросе совсем не просто. В начале 1980-х годов персональные компьютеры начали выпускать сотни фирм по всему миру, включая США, Великобританию, Германию, Францию, Японию, Южную Корею, Гонконг, Австралию, Бразилию, соцстраны и т.д. Однако если посмотреть на известные модели, о которых можно найти достоверную информацию в Интернете, получается, что действительно до 1983-85 года 16-разрядных домашних ПК (во всяком случае, массово доступных по цене) не выпускалось, и первым недорогим полностью 16-битным был именно наш БК-0010! Это, на первый взгляд, довольно странно, поскольку сами 16-разрядные микропроцессоры появились ещё в середине-конце 1970-х. В частности тот же Intel 8088 (16-битный внутри и 8-битный снаружи), ставший основой для первых IBM PC, был заявлен ещё в 1979 году. Более того, на рубеже 1970-х и 1980-х годов появились и практически 32-разрядные микропроцессоры вроде знаменитого Motorola 68000. Однако в те годы производители и потребители домашних компьютеров были вполне удовлетворены и возможностями самых дешёвых 8-разрядных процессоров. К тому же конкуренция заставляла заботиться о минимальной себестоимости продукции, а 16- и 32–разрядные процессоры были в разы дороже, как и другие компоненты для таких ПК. Так что, как ни странно, именно в СССР, где не было никакой конкуренции и «рыночной целесообразности», без особой шумихи был впервые разработан и с 1983-84 года начал производиться недорогой 16-битный домашний компьютер.

Нередко встречается утверждение, что американская фирма Texas Instruments - очень известный в то время производитель калькуляторов, часов и другой электронной техники - ещё в 1979 году выпустила на рынок 16-битную модель TI-99/4, и именно этот ПК был первым в мире 16-разрядным домашним компьютером. Однако при этом не учитывается, что TI-99/4, как и выпущенный в 1981 году немного усовершенствованный TI-99/4A, имея действительно 16-разрядный процессор, не был полностью 16-разрядным ПК. Более того, он фактически даже и не был ПК в привычном смысле этого слова, поскольку не имел оперативной памяти пользователя! Первоначально 99/4 создавался как почти 8-битный ПК (а конструктивно - скорее игровая приставка с клавиатурой) со специальным процессором, содержащим встроенные 8 Кб ПЗУ и 256 байт ОЗУ, который был 16-битным лишь внутри, а все остальные компоненты должны были оставаться 8-битными. В результате из-за технологических трудностей разработка процессора провалилась, и TI была вынуждена использовать в этом ПК уже выпускавшийся 16-битный процессор TMS9900, а конструкция ПК стала совсем странной: процессор, 256 байт статического «сверхоперативного» ОЗУ и примерно треть ПЗУ (8 Кб из 26) были 16-битными, всё остальное - 8-битным (видеоконтроллер, ОЗУ видеоконтроллера (оно же частично заменяло отсутствующее основное пользовательское ОЗУ), внешнее ОЗУ (покупка которого обязательно требовалась для работы многих программ и устройств), основная часть встроенного ПЗУ, внешние картриджи ПЗУ). Более того, поскольку в штатном варианте ПК хранить программы в машинном коде было просто негде, разработчики 99/4 придумали специальный язык GPL, интерпретатор которого разместили в 16-битном «системном» ПЗУ, а все программы предлагалось выпускать на специальных 8-битных картриджах ПЗУ, причём не в машинных кодах, а на GPL - они должны были считываться из картриджей как набор данных (с побайтным регистровым доступом) и исполняться интерпретатором GPL! Все эти несуразности, вызванные неудачей в разработке микропроцессора с 8-битной внешней шиной и стремлением заставить пользователей покупать достаточно дорогие картриджи (специальные чипы для которых производила только TI), привели к появлению одного из самых странных ПК, в котором благородная идея использования достаточно мощного 16-битного процессора и хорошего видеоконтроллера (8-битного) была сразу обесценена отсутствием пользовательского ОЗУ, 8-битным доступом к большей части внутренней и внешней памяти, а также использованием для написания программ не ассемблера, а интерпретируемого языка GPL.

Отметим, что в самих же США компьютеры, имевшие 16-битную внутреннюю конструкцию процессора, но 8-битную внешнюю (или 32-битную внутреннюю и 16-битную внешнюю) редко называли 16-разрядными (32-разрядными) - обычно указывалось лишь то, что у них 16-битный (32-битный) процессор. И это вполне понятно - ведь в таких ПК разрядность большинства важнейших компонентов (ОЗУ, ПЗУ, контроллеров) определялась именно разрядностью внешней шины данных процессора. В советской терминологии подобные ПК обычно именовались «частично 16-разрядными» («частично 32-разрядными») или «8/16-разрядными» («16/32-разрядными»). Яркие представители такого класса ПК - IBM PC и PC/XT. Они тоже имели 16-битную внутреннюю архитектуру процессора (с 8-битной внешней шиной), но 8-битную память (ОЗУ и ПЗУ) и 8-битные контроллеры устройств (видеокарты, контроллеры дисководов и жёстких дисков, внешних портов и т.д.), что позволяло несколько уменьшить себестоимость компьютера. Однако называть такие ПК настоящими 16-битными было бы, конечно, совсем нелогично - все их компоненты (кроме внутренней структуры процессора) были 8-битными.

Советский же БК-0010 имел не только 16-разрядный процессор, но и 16-разрядный доступ ко всей оперативной и постоянной памяти, и 16-разрядные контроллеры дисплея и параллельного порта, что давало ему право называться настоящим, полностью 16-разрядным ПК.

Кстати, у персональных компьютеров IBM полностью 16-разрядная модель IBM PC/AT на базе процессора 80286 появилась лишь в 1984-м году, и стоила она в самой базовой конфигурации (без жёсткого диска, монитора и видеокарты!) от 4000 долларов.

«Если рассмотреть образцы вооружений разных родов войск, да еще в историческом аспекте, сколько образцов советской военной техники были лучшими сравнительно с теми же американскими? Где больше было денег, современного исследовательского и производственного оборудования, ученых? Может СССР лидировал в создании компьютеров, программного обеспечения?»


Хочу сказать отдельное спасибо sevtrash, который сподвиг меня на написание данной статьи, и чьи фразы из комментариев я использовал в качестве эпиграфа.

Словосочетания «российский процессор» или «советский компьютер», к сожалению, вызывают ряд специфических ассоциаций, внедренных нашими СМИ, бездумно (или напротив сознательно) тиражирующими западные статьи. Все уже привыкли считать, что это допотопные устройства, громоздкие, слабые, неудобные, да и вообще, отечественная техника - это всегда повод для сарказма и иронии. К сожалению, мало кто знает, что СССР в определенные моменты вычислительной техники был «впереди планеты всей». И еще меньше информации вы найдете о современных отечественных разработках в этой области.

Советский Союз называют страной, обладавшей одной из самых сильных научных школ в мире, не только «квасные» патриоты. Это объективный факт, основанный на глубоком анализе системы образования экспертами Британской ассоциации педагогов. Исторически в СССР особый упор делался на подготовку специалистов в области естественных наук, инженеров и математиков. В середине XX века в стране Советов существовало несколько школ разработки вычислительной техники, и недостатка квалифицированных кадров для них не наблюдалось, именно поэтому были все предпосылки для успешного развития новой отрасли. Десятки талантливых ученых и инженеров участвовали в создании различных систем электронных счетных машин. Речь сейчас пойдет только об основных вехах развития в СССР цифровых ЭВМ. Работа же над аналоговыми машинами была начата еще до войны и в 1945 году первая в СССР аналоговая машина уже работала. До войны же были начаты исследования и разработки быстродействующих триггеров - основных элементов цифровых ЭВМ.


Сергея Алексеевича Лебедева (1902 - 1974 гг.) небезосновательно называют основоположником развития вычислительной техники в Советском Союзе - под его руководством были разработаны 15 типов ЭВМ, от простейших ламповых до суперкомпьютеров на интегральных схемах

В СССР было известно о создании американцами в 1946 году машины ENIAC - первой в мире ЭВМ с электронными лампами в качестве элементной базы и автоматическим программным управлением. Несмотря на то, что Советские ученые знали о существовании этой машины, тем не менее, как и любая другая информация, просачивавшаяся в Россию во времена холодной войны, эти данные были весьма скудными и невнятными. Поэтому разговоры о том, что советская вычислительная техника копировалась с западных образцов, - не более чем инсинуации. Да и о каких «образцах» может идти речь, если действующие модели компьютеров в то время занимали два-три этажа и доступ к ним имел лишь весьма ограниченный круг лиц? Максимум, который могли получить отечественные шпионы, - отрывочные сведения из технической документации и стенограммы с научных конференций.

В конце 1948 года академик С.А.Лебедев начал работу над первой отечественной машиной. Через год была разработана архитектура (с нуля, без каких-либо заимствований), а также принципиальные схемы отдельных блоков. В 1950 году ЭВМ была в рекордные сроки смонтирована силами всего лишь 12 научных сотрудников и 15 техников. Свое детище Лебедев назвал «Малая электронная счетная машина», или МЭСМ. «Ребеночек», состоявший из шести тысяч электронных ламп, занял целое крыло двухэтажного здания. Пусть никого не шокируют такие размеры. Западные образцы были ничуть не меньше. На дворе стоял пятидесятый год и балом еще правили радиолампы.

Следует отметить, что в СССР МЭСМ была запущена в то время, когда в Европе была только одна ЭВМ - английская ЭДСАК, запущенная всего на год раньше. Но процессор МЭСМ был намного мощнее за счет распараллеливания вычислительного процесса. Аналогичная ЭДСАК машина - ЦЭМ-1 - была принята в эксплуатацию в Институте атомной энергии в 1953 году - и она также превосходила ЭДСАК по ряду параметров.

При создании МЭСМ были использованы все основополагающие принципы создания компьютеров, такие как наличие устройств ввода и вывода, кодирование и хранение программы в памяти, автоматическое выполнение вычислений на основе хранимой в памяти программы и т.д. Главное, это была ЭВМ на основе использующейся и в настоящее время в вычислительной технике двоичной логики (американская ENIAC использовал десятичную систему(!!!), и кроме того на ней был применен разработанный С.А. Лебедевым принцип конвейерной обработки, когда потоки команд и операндов обрабатываются параллельно, применяется сейчас во всех ЭВМ в мире.

Вслед за малой электронно-счетной машиной последовала и большая - БЭСМ-1. Разработка была завершена осенью 1952 года, после чего Лебедев стал действительным членом Академии наук СССР.

В новой машине был учтен опыт создания МЭСМ и применена улучшенная элементная база. Компьютер обладал быстродействием в 8-10 тысяч операций в секунду (против всего лишь 50 операций в секунду у МЭСМ), внешние запоминающие устройства были выполнены на основе магнитных лент и магнитных барабанов. Несколько позже ученые экспериментировали с накопителями на ртутных трубках, потенциалоскопах и ферритовых сердечниках.
Если в СССР о западных ЭВМ знали мало, то в Европе и США о советских компьютерах не знали практически ничего. Поэтому доклад Лебедева на научной конференции в Дармштадте стал настоящей сенсацией: оказалось, что собранная в Советском Союзе БЭСМ-1 является самым производительным и мощным компьютером в Европе.

В 1958 году после еще одной модернизации оперативной памяти БЭСМ, уже получившая название БЭСМ-2 производилась серийно на одном из заводов Союза. Результатом дальнейшей работы коллектива под руководством Лебедева стало развитие и усовершенствование первых БЭСМ. Было создано новое семейство суперкомпьютеров под маркой «М», чей серийный образец М-20, выполнявший до 20 тысяч операций в секунду, стал на тот момент самой быстройдействующей ЭВМ в мире.

1958 год стал еще одной важной, хоть и малоизвестной вехой в развитии вычислительной техники. Под руководством В. С. Бурцева, ученика Лебедева, комплекс, состоявший из нескольких машин М-40 и М-50 (глубокая модернизации М-20), в том числе расположенных на мобильной платформе, был объединен между собой в беспроводную сеть, работавшую на расстояниях до 200 км. При этом официально считается, что первая в мире компьютерная сеть заработала только в 1965 году, когда были соединены компьютеры TX-2 Массачусетского технологического института и Q-32 корпорации SDC в Санта-Монике. Таким образом, вопреки американскому мифу, компьютерная сеть была впервые разработана и воплощена в СССР, на целых 7 лет раньше.

Специально для нужд военных, в том числе для Центра контроля космического пространства, было разработано несколько моделей ЭВМ на базе М-40 и М-50, ставшие «кибернетическим мозгом» советской противоракетной системы, созданной под руководством В.Г. Кисунько и сбившей в 1961 году реальную ракету - американцы смогли повторить это только через 23 года.

Первой полноценной машиной второго поколения (на полупроводниковой основе) стала БЭСМ-6. Эта машина обладала рекордным для того времени быстродействием - около миллиона операций в секунду. Многие принципы ее архитектуры и структурной организации стали настоящей революцией в вычислительной технике того периода и, по сути, были уже шагом в третье поколение ЭВМ.


БЭСМ-6, созданная в СССР в 1966 году, обладала рекордным для того времени быстродействием - около миллиона операций в секунду

В БЭСМ-6 было реализовано расслоение оперативной памяти на блоки, допускающие одновременную выборку информации, что позволило резко увеличить скорость обращений к системе памяти, широко использован принцип совмещения выполнения команд (до 14 машинных команд могли одновременно находиться в процессоре на разных стадиях выполнения). Этот принцип, названный главным конструктором БЭСМ-6 академиком С.А.Лебедевым принципом "водопровода", стал впоследствии широко использоваться для повышения производительности универсальных ЭВМ, получив в современной терминологии название "конвейера команд". Был впервые внедрен метод буферизации запросов, создан прообраз современной кэш-памяти, реализована эффективная система многозадачности и обращения к внешним устройствам и многие другие инновации, некоторые из которых применяются до сих пор. БЭСМ-6 оказалась настолько удачной, что серийно выпускалась в течение 20 лет и эффективно работала в различных государственных структурах и институтах.

К слову, созданный в Швейцарии Международный центр ядерных исследований пользовался для расчетов машинами БЭСМ. И еще один показательный факт, бьющий по мифу об отсталости нашей вычислительной техники… Во время советско-американского космического полета «Союз-Аполлон» советская сторона, пользующаяся БЭСМ-6, получала обработанные результаты телеметрической информации за минуту - на полчаса раньше, чем американская сторона.

Интересна в этой связи статья куратора Музея вычислительной техники в Великобритании Дорона Свейда о том, как он покупал в Новосибирске одну из последних работающих БЭСМ-6. Заголовок статьи говорит сам за себя: "Российская серия суперкомпьютеров БЭСМ, разрабатывавшаяся более чем 40 лет тому назад, может свидетельствовать о лжи Соединенных Штатов, объявлявших технологическое превосходство в течение лет холодной войны".

В СССР действовало множество творческих коллективов. Институты С.А.Лебедева, И.С.Брука, В.М.Глушкова - только крупнейшие из них. Иногда они конкурировали, иногда дополняли друг друга. И все работали на острие мировой науки. Мы пока говорили в основном о разработках академика Лебедева, но и остальные коллективы в своей работе опережали зарубежные разработки.

Так, например, в конце 1948 года сотрудники Энергетического института им. Крижижановского Брук и Рамеев получают авторское свидетельство на ЭВМ с общей шиной, а в 1950-1951 гг. создают ее. В этой машине впервые в мире вместо электронных ламп используются полупроводниковые (купроксные) диоды.

А в тот же период, когда С.А..Лебедевым создавалась БЭСМ-6, академик В.М. Глушков завершил разработку большой ЭВМ «Украина», идеи устройства которой позднее были использованы в больших американских ЭВМ 1970-х годов. Созданное же академиком Глушковым семейство ЭВМ «МИР» опередило на двадцать лет американцев - это были прообразы персональных компьютеров. В 1967 году фирма IBM купила «МИР-1» на выставке в Лондоне: у IBM был спор о приоритете с конкурентами, и машина была куплена для того, чтобы доказать, что принцип ступенчатого микропрограммирования, запатентованный конкурентами в 1963 году, давным-давно известен русским и применяется в серийных машинах.


Пионер информатики и кибернетики, академик Виктор Михайлович Глушков (1923-1982) известен специалистам во всем мире своими научными результатами мирового значения в математике, информатике и кибернетике, вычислительной технике и программировании

Следующим этапом развития вычислительной техники в СССР стали работы по созданию супер-ЭВМ, семейство которых получило название «Эльбрус». Этот проект был начат еще Лебедевым, а после его смерти был возглавлен Бурцевым.

Первый многопроцессорный вычислительный комплекс «Эльбрус-1» был запущен в 1979 году. Он включал в себя 10 процессоров и обладал быстродействием порядка 15 миллионов операций в секунду. Эта машина на несколько лет опередила ведущие западные образцы ЭВМ. Симметричная многопроцессорная архитектура с общей памятью, реализация защищенного программирования с аппаратными типами данных, суперскалярность процессорной обработки, единая операционная система для многопроцессорных комплексов - все эти возможности, реализованные в серии "Эльбрус", появились значительно раньше, чем на Западе, принцип которой используется по сей день в современных суперкомпьютерах.

«Эльбрусы» вообще внесли в теорию вычислительных машин ряд революционных новшеств. Это суперскалярность (обработка за один такт более одной инструкции), реализация защищенного программирования с аппаратными типами данных, конвейеризация (параллельная обработка нескольких инструкций) и др. Все эти возможности впервые появились в советских компьютерах. Еще одним основным отличием системы «Эльбрус» от ей подобных, выпускавшихся в Союзе ранее, является ориентация на языки программирования высокого уровня. Базовый язык («Автокод Эльбрус Эль-76») был создан В. М. Пентковским, и впоследствии ставшим главным архитектором процессоров Pentium.

Следующая модель этой серии, "Эльбрус-2", выполнял уже 125 миллионов операций в секунду. "Эльбрусы" работали в целом ряде важных систем, связанных с обработкой радиолокационной информации, на них считали в номерных Арзамасе и Челябинске, а многие компьютеры этой модели до сих пор обеспечивают функционирование систем противоракетной обороны и космических войск.

Последней моделью этой серии стал "Эльбрус 3-1", отличавшийся модульностью конструкции и предназначавшийся для решения больших научных и экономических задач, в том числе моделирования физических процессов. Его быстродействие достигло 500 миллионов операций в секунду (на некоторых командах), в два раза более быстро, чем самая производительная американская супермашина того времени Cray Y-MP.

После развала СССР, один из разработчиков Эльбрусов, Владимир Пентковский эмигрировал в США и устроился на работу в корпорацию Intel. Вскоре он стал ведущим инженером корпорации и под его руководством в 1993 году в Intel разработали процессор Pentium, по слухам, названный так именно в честь Пентковского.

Пентковский воплощал в Intel"овских процессорах те советские ноу-хау, которые знал, и к 1995 году фирма Intel выпустила более совершенный процессор Pentium Pro, который вплотную приблизился по своим возможностям к российскому микропроцессору 1990 года Эль-90, но так и не догнал его, хотя и был создан на 5 лет позже.

По словам Кейта Диффендорфа, редактора бюллетеня Microprocessor Report, компания Intel переняла огромный опыт и совершенные технологии, разработанные в Советском Союзе, в том числе основополагающие принципы современных архитектур, такие как SMP (симметричная мультипроцессорная обработка), суперскалярная и EPIC (Explicitly Parallel Instruction Code - код с явным параллелизмом инструкций) архитектуры. На основе этих принципов в Союзе уже выпускались компьютеры, в то время как в США эти технологии только «витали в умах ученых (!!!)».

Хочу подчеркнуть, что в статье говорилось исключительно о воплощенных в «железе» и выпускавшихся серийно компьютерах. Поэтому, зная фактическую историю советской вычислительной техники, сложно согласиться с мнением об ее отсталости. Более того, ясно видно, что в этой отрасли мы стабильно были в авангарде. Вот только об этом, к сожалению, мы не слышим ни с экранов телевизоров, ни из иных СМИ.

Несмотря на то, что очень немногие могли позволить себе персональный компьютер, в 80-е годы в СССР активно разрабатывали такие устройства. Было представлено много продуктов, а для вас мы подготовили список из 10 самых крутых.

«Агат» (1984–1993)

Компьютер «Агат» был первым подобным устройством, созданным для широкого распространения и использования в обучении. Его разработали на основе Apple II, выпустив в серийное производство в 1984 году. Интересно, что его производили аж до 1993 года. Жесткий диск «Агата» вмещал до 2 КБ информации, но можно было ставить дополнительные модули памяти. ОЗУ — до 128 КБ в зависимости от поколения компьютера. В комплекте также были два игровых джойстика.

«Корвет» (1987)


SSMU

«Корвет» разрабатывали для рабочих потребностей: он мог обрабатывать информацию, делать расчеты, составлять архивы данных. Персональный компьютер был одной из передовых разработок СССР и отображал графику на высокой скорости. Разработчики даже утверждали, что этот параметр был лучшим по сравнению с IBM PC. Но из-за большого количества брака, допущенного при производстве, «Корвет» не стал популярным и славился своей ненадежностью.

«Львов ПК-01» (1986–1991)


Созданный во Львовском политехническом институте, «Львов ПК-01» был сделан для организации обучения в школах и институтах. На нем можно было читать книги, выполнять задания или играть. Внешней памятью служил бытовой магнитофон, а если нужно, то к компьютеру можно было подключить принтер ROBOTRON. Существовало несколько модификаций «Львов ПК-01», но все разработки были свернуты после распада СССР. А жаль - последний вариант компьютера даже получил дисплей на 256 цветов, да и вообще, «Львов ПК-01» имел реальный потенциал стать домашним компьютером для каждого.

«Микроша» (1987)


Один из первых ПК, предназначенных, что называется, «для дома, для семьи». Выводить изображение можно было на бытовой телевизор, кассетный магнитофон выполнял роль памяти. Поэтому для пользователей выпускались программы вроде редактора текста, ассемблера, калькулятора, игр - и все на кассетах. Демократичности «Микроше» добавляла и цена: тогда его можно было приобрести за 500 рублей. Конечно, многовато, но уж никак не запредельно.

«БК» (1983–1993)



Серия «Бытовых компьютеров» была создана для дома и учебных заведений. Она даже стала относительно популярной: цена на такое устройство колебалась от 600 до 750 рублей, что было соразмерно стоимости хорошего цветного телевизора. Она превышала среднюю зарплату в три-четыре раза, но семьи могли позволить себе накопить на такой компьютер. «БК» управлялся первой советской полноценной операционной системой DEMOS, которую зачастую в шутку называли UNAS («у нас»), пародируя известную за границей UNIX («у них»).

Robotron 1715 (1984–1989)


Waste

Удивительно функциональный компьютер Robotron 1715 производился в ГДР и стал популярным из-за того, что обладал широкими возможностями. Например, текстовый редактор был не просто удобным, но и корректно работал с кириллицей, компиляторы языков программирования — Pascal, например — позволяли создавать сложные программы. А еще было довольно много игр: «Тетрис», «Крестики-нолики», «Шахматы», «Лабиринт», советские аналоги «Змейки» и «Пакмана». Позже программист Александр Гарнышев создал новые игры, в которых сумел использовать звуки принтера как спецэффекты для происходящего.

«Искра 1030» (1989)


Созданный для обучения, компьютер «Искра 1030» существовал в двух модификациях: одна для учителей (с жестким диском) и другая для учеников (без него). Устройство было вполне конкурентоспособным — объем операционной памяти составлял 256 КБ, и его можно было увеличить до 1 МБ.

«Радио-86РК» (1986)



Уникальный в своем роде компьютер предназначался для увлеченных инженерным делом и радио. Его нужно было собрать самому: купить детали, платы и смонтировать все компоненты. Затем записывалась прошивка, а блок питания, клавиатура и корпус изготавливались самостоятельно. В качестве устройства вывода предлагалось использовать телевизор. «Радио-86РК» было очень тяжело собрать, а еще сложнее - отладить. Поэтому большой популярностью он не пользовался.

«Криста» (1986)


Компьютер работал на советском аналоге процессора Intel 8080 и, в общем-то, очень походил на «Микрошу». Было только одно, но заметное отличие: «Кристой» можно было управлять с помощью светового пера, нажимая им на области тач-панели. Кроме того, в комплект входила кассета, на одной стороне которой были игры «Орегонская тропа» и «Королевство Эйфория» (вдобавок к стандартным), а на другой - несколько уроков для изучения языка Бейсик.

«Апогей БК-01» (1988–1991)



KMU

Компьютер, который не был выдающимся по своим техническим характеристикам, безусловно выигрывал в одном: он стоил 440 рублей. Пользователи могли играть на нем, писать тексты или хранить информацию. А студенты технических факультетов получили программы для расчетов по высшей математике и статистике.

Уже не секрет, что в 1950 -70 годах СССР был одним из мировых лидеров в гонке под названием «разработка и производство компьютерной техники».
Первые ЭВМ - МЭСМ, М-1, позднее известная БЭСМ-6 с быстродействием более 1 млн. операций с плавающей запятой в секунду, компактные ЭВМ серии МИР, и многие другие достижения великих умов в «компьютерной» сфере советских времен.

Многим известна истории создания ПК таких мировых зарубежных гигантов как Apple, IBM и т.д., так как информация о них на протяжении не одного десятилетия освещалась и была на слуху. Исторически ложилось мнение, что в СССР кроме того, что не было «секса», так еще и персональные компьютеры появились позже на лет 10 чем в той же Америке. Но это не более чем миф.Первые советские интегральные микросхемы с несколькими десятками транзисторов, увидели свет уже в середине 1960 годов, а к середине 1970-х выпускались микропроцессоры, сложные микросхемы, количество транзисторов в них уже измерялось в тысячах. В 1974 году были разработаны первые микро-ЭВМ на основе универсальных микропроцессоров. Секционные процессоры серий К532 и К536 (появившиеся в том же году) позволяли выпускать машины с разрядностью до 16–32 бит. Так появились 16-разрядные микро-ЭВМ. В 1977 году был выпущен аналог Intel 8080 - 8-разрядный процессор К580ИК80. Он то и стал основой для создания целого ряда моделей ПК и микро-ЭВМ. Через два года был разработан первый в мире 16-разрядный однокристальный микро-ЭВМ - К1801ВЕ1. На базе К1801ВЕ1 в 1981 создан К1801ВМ (однокристальный 16-разрядный микропроцессор), система команд которого была похожа на систему команд мини-ЭВМ PDP-11.Из речи заместителя министра радиопромышленности СССР:




Размах в размерах первых ЭВМ был «огромен»: тонны оборудования, целые машинные залы, персонал, обслуживающий такое чудо техники. А потому мысль о том, что можно пользоваться ЭВМ дома - казалась просто смешной, кто мог себе позволить разместить такой агрегат в 4 стенах квартиры. Да и сама концепция малогабаритного компьютера для личного пользования в то время была необычной. Но она была. Конец 70 годов знаменовался массовым производством и выпуском ПК: Искра-1256, Искра-226, Искра-555, ВЭФ-Микро, Микро-80, Электроника НЦ-8010, Электроника БК-0010, Микроша, Криста, Апогей БК-01, Партнер 01.01, Спектр-001 и т.д.

Кроме того, у советских граждан было непреодолимое желание, голубая мечта так сказать, иметь ПК на вынос, тот который можно было бы содержать дома. В одной из газет, кажись «Труд», в 1987 году была опубликована заметка о том, как начальник АСУ цементного завода в Приморском украл (то бишь вынес) детали с завода для сборки компьютеров. Вынес не много не мало, а деталей на 6 тысяч рублей, в то время за такие деньги можно было купить квартиру. Пришлось товарищу В. Моляренко за свое «хобби» получить два года исправительных работ.

Обширная технологическая ниша, образовавшаяся из-за острого дефицита в личных автоматизированных средствах связи и переработки информации - вот что были призваны заполнить ПК.
Одни советские издания рассказывали, как собрать ПЭВМ своими руками, другие повествовали насколько необходим данный агрегат советским гражданам. Например журнал «Эти профессиональные персональные компьютеры» подробно описывал то, как устроены современные компьютеры и какое не только светлое, но и увлекательное будущее они несут: помогают изучить английский язык, дают возможность играть в нарды, создавать вязальные схемы, работать с документами. В известных журналах с миллионым тиражем начали появляться целые разделы, посвященные IT-тематике, обычно назывались они «Человек и компьютер». Что говорить, даже в журнале для публики 6-12 лет «Мурзилке» появилась иллюстрация, на которой учительница ознакамливает учеников с вычислительной машиной.

1986 год. Иллюстрация журнал «Мурзилка»

1986 год. Иллюстрация в журнале «Юный техник»Микроша (на основе Радио-86РК)


В 1986 году Лианозовским электромеханическим заводом была выпущена РК-совместимая модель Микроша. Это была улучшенная версия прототипа РК86, увеличено базовое ОЗУ до 32 Кбайт, появился программируемый таймер КР580ВИ53. Почему Микроша стала одной из известнейших моделей советских ПК, да все банально просто - опять маркетинг, реклама. В 1986 году реклама о ПК Микроше красовалась на обложке журнала Радио, а годом позже, в 1987 году ЭВМ - на обложке ежемесячного научно-популярного журнала «Наука и жизнь» (№7).

ПК Микроша - надежная, сравнительно недорогая машина. Стоимость такого устройства составляла на то время 500 рублей.




«Наука и жизнь» №7 1987 годВесила ПЭВМ Микроша около 3 кг: системный блок 1.4 кг, блок питания - 1,3 кг, модулятор -200 грамм. Технические данные простейшего компьютера предназначенного для широкой продажи:
-Разрядность - 8 бит
-Объем ОЗУ - 32 Кбайт
-Тактовая частота - 1.8 МГц
-Потребляемая мощность - не более 20 Вт

Как говорилось о ПК в журнале «Наука и жизнь», Микроша может и не самый лучший, не такой как хотелось бы иметь, но все же настоящий, живой компьютер, открывающий немало интересных возможностей и в основном соответствующий сформировавшемуся на мировом рынке классу простейших ЭВМ. В качестве устройства внешней памяти использовался обычный бытовой магнитофон, в качестве дисплея - черно-белый телевизор. В комплекте к ЭВМ прилагалась небольшая приставка-блочек (размером с пачку сигарет), так называемый модулятор, для подключения к телевизору. На экране телевизора помещалось 24 строки из букв или цифр, по 64 символа в одной строке. Операцию сложения Микроша выполнял за 3 микросекунды, а быстродействие его составляло 200-300 тыс. операция в секунду.

Микропроцессор Микроши - восьмиразрядный КР580ИК80А, адресная шина - 16-ти проводная. Первая порция программного обеспечения поставлялась на магнитофонной кассете МК-60, на ней программы которые необходимы для начала работы с ПЭВМ.

Пользователь, который хотел ввести программы, написанные на языке Бейсике, должен был начинать сеанс работы с компьютером со считывания в ОЗУ машины интерпретатора этого языка. Такая необходимость была из-за отсутствия ПЗУ необходимой емкости.Криста - чудо техники с «тачскрином»


Еще одним интересным экземпляром и представителем класса простейших ПЭВМ была 8-разрядная машина Криста. ПЭВМ Криста начала выпускаться на Муромском заводе радиоизмерительных приборов в 1986 году. Характеристики устройства: 32 Кбайт ОЗУ, 2 Кбайт ПЗУ, звуковой генератор на микросхеме ВИ53. Криста была частично совместима с Радио-86РК, в 1986 году стоила она 510 рублей.
Советский персональный компьютер работал на советском аналоге процессора Intel 8080 и очень походил на «Микрошу». Дисплеем служил обычный бытовой телевизор, а для хранения, записи и воспроизведения программ - кассетный магнитофон. Криста это первая советская персональная машина укомплектованная световым пером. Световое перо по сути представляло собой светочувствительную ручку, при помощи которой можно было прикасаться к объектам на экране, такой себе отечественный тачскрин. Такой инструмент позволял быстро выбирать объекты на дисплее, применялся для рисования на нем. Говорить о полезности такого манипулятора не стоит, ибо работать у большого экрана телевизора, вырисовывая что-либо, было крайне некомфортно для глаз.Информация из рекламы на ПК Криста:


Из воспоминаний о Кристе: «мой первый комп с ним на кассете шел „музыкальный секвенсер“ в качестве музыкального демо был полонез огинского, не хуже синтезатора валил, а программы от микроши подходили», «а программа для светового пера - это был экран заполненный точками вот такими …… (псевдографика). При поднесении пера точки заменялись на звездочки. Сохраняться было нельзя. Было много игр. Подходили почти все от Радио 86рк и других. Был еще интерпретатор ассемблера но его постичь мне не удалось и похоже вообще невозможно))».Апогей - самый продвинутый анолог Радио-86РК


Персональная электронная вычислительная машина «Апогей БК-01». Выпуск данного советского 8-разрядного ПК стартовал в далеком 1988 году, на заводе БРА в тульской области (занимался выпуском бытовой радиоаппаратуры): 64 Кбайт ОЗУ, 4 Кбайт ПЗУ. Присутствовал штатный трехканальный звуковой генератор на микросхеме КР580ВИ53 (для вывода звука). Для хранения, записи и воспроизведения программ кроме кассетного магнитофона, была предусмотрена загрузка из внешнего ПЗУ до 64 Кбайт, правда только чтение. Апогей БК01 обеспечивал программную поддержку двух режимов записи и считывания.
Апогей БК-01Ц - это «цветная» версия ПЭВМ. Тут была применена микросхема КР580ВГ75, которая помогла реализовать цветное изображение: 8 цветов для символов на черном фоне, либо 8 цветов фона с черными символами. Впрочем, ПЭВМ Апогей выводил достаточно сложные и красивые картинки.

Стоимость компьютера составляла от 440 до 560 рублей.
ПК-01 Львов


В 1986 году во Львовском политехническом институте была разработана персональная 8-разрядная учебно-бытовая ЭВМ «Львов». Выпущена машина была львовским производственным объединением им. Ленина. ПК был основан на процессоре КР580ВМ80А, были улучшены графические возможности. ОЗУ составляла 64 Кбайт, 16 Кбайт отводилось под видеопамять. Звуковой генератор во Львове отсутствовал, звук выводился программно с полной загрузкой процессора.
Характеристики ПЭВМ Львов: частота 2,22 МГц, быстродействие составляло 200-300 тысяч операций за секунду, ОЗУ - 64 Кбайт (видеопамять 16 Кбайт), ПЗУ - 16 Кбайт, потребляемая мощность составляла не более 30 Вт.
Магнитофон был внешней памятью, а обычный телевизор служил в качестве монитора. На экране могли одновременно отображаться 4 из 8 цветов палитры. К ПЭВМ Львов можно было подключить контролер НГМД, принтер ROBOTRON. Стоимость такой машины равнялась 750 рублям стоимость была выше из-за наличия цветной графики и относительно большого объема памяти. Модель была популярна, особенно в Украине, выпущено было 80 тысяч таких устройств. Потому не странно что по количеству выпущенных игр и программ эта ПЭВМ занимает 3 или 4 место среди советских персональных компьютеров. Возможно его популярность была не чем иным, как очередным маркетинговым ходом, ведь эта машина активно рекламировалась по телевизору в конце 80-х.

Сегодня выражение ЭВМ «Электронная вычислительная машина» напрочь изжило себя. На замену ему пришло новое, более удобное слово с иноязычными корнями «компьютер». По данным некоторых исследований, по всему миру личным компьютером владеет практически 61% всего населения Земли. А ведь каких-то 50–60 лет назад никто и подумать не мог, что компьютеры смогут стать новой и невероятно огромной нишей в коммерции. Помимо этого, эргономика компьютеров каждое десятилетие менялась.


«ENIAC»

Раньше, в эпоху ранних, еще электронно–механических ЭВМ, которые по своим возможностям мало чем отличались от современного калькулятора занимали огромные, специально отведенные помещения. Вот например, самый первый представитель компьютеров (ЭВМ) ранней эпохи - «ENIAC», разработанный учеными из Пенсильванского университета по заказу Армии Соединенных Штатов. Потреблял он практически 150 киловатт энергии, а весил 30 тонн. На графике вы можете увидеть разницу в производительности между современными вычислительными станциями и «ENIAC»:

Впечатляет. Сегодня даже смартфон, который умещается у нас на ладони, в миллионы раз превосходит то, что было десятки лет назад. Но сегодня не об этом. В этой статье я хочу рассказать вам о заслугах наших отечественных инженеров, о вкладе, который они внесли в развитие всей компьютерной индустрии.

Первая ЭВМ в СССР

Началось все с появления «МЭСМ» (Малой Электронной Счётной Машины), ставшей точкой отсчета в развитии наших вычислительных технологий. Её проект был создан еще в 1948-м году ученым Сергеем Алексеевичем Лебедевым, который являлся одним из основоположников информационных технологий и вычислительной техники в СССР. А также Героем Социалистического труда и Лауреатом премии Ленина.

Машина была сконструирована через два года, в 1950–м. А смонтирована в бывшем двухэтажном общежитии при женском монастыре в Феофании под Киевом. ЭВМ могла выполнять три тысячи операций в секунду, при этом потребляя 25 киловатт электроэнергии. Состояло это все чудо технологического прогресса из шести тысяч вакуумных ламп–проводников. Площадь отведенная под всю систему составляла 60 квадратных метров. Также одной из особенностей «МЭСМ» являлась поддержка трехадресной системы команд и возможность считывания данных не только с перфокарт, но и с магнитных ленточных носителей. Нахождение корня дифференциального уравнения стало первым вычислением, обработанным при помощи «МВЭМ». Спустя год (в 1951–м) инспекцией академии наук, «МЭСМ» Лебедева была утверждена и принята на постоянную эксплуатацию в военной и промышленной сфере.

«БЭСМ–1»



Процесс работы на БЭСМ–1

В 1953 году, снова под крылом Сергея Лебедева была разработана Большая Электронная Счетная Машина первого поколения (БЭСМ–1). К сожалению, выпущена она была лишь в одном экземпляре. Вычислительные возможности «БЭСМ» стали аналогичны вычислительным машинам США того времени, а также «БЭСМ–1» стала самой продвинутой и производительной ЭВМ в Европе. На протяжении практически 6 лет машина неоднократно модернизировалась инженерами. Благодаря чему её производительность смогла достигнуть 10 тысяч операций в секунду. В 1958 году после очередной модернизации было принято решение переименовать «БЭСМ–1» в «БЭСМ–2» и пустить её в серийное производство. Всего было выпущено несколько десятков штук этой ЭВМ.

«Стрела»

Но первой массовой Советской ЭВМ стала легендарная «Стрела», разрабатываемая примерно в тот же период начала 50–х под эгидой главного инженера Юрия Яковлевича Базилевского.

Вычислительная мощность «Стрелы» составляла 2 тыс. операций в секунду. Что немного уступало той же «МЭСМ» Лебедева, но тем не менее это не помешало Стреле стать самой лучшей в сфере промышленных ЭВМ. Всего на свет было выпущено 7 таких экземпляров.

«М–1»

Уже точно ясно, что конец 40–х и начало 50–х были очень плодотворными относительно растущего энтузиазма внедрения компьютерных систем в производственные и военные ниши бывшего Советского Союза. Вот и в Москве сотрудниками Энергетического института Кржижановского разрабатывалась своя ЭВМ, а в 1948–м году даже был подан патент на её регистрацию.

Ключевыми фигурами в этом проекте являлись Башир Рамеев и Исаак Брук. К 1951 г. ЭВМ («М–1») была сконструирована, но по своим возможностям она уступала той же МЭСМ Лебедева в стезе вычислительных мощностей. По сравнению с «МЭСМ», «М–1» ЭВМ могла выполнять лишь 20 операций в секунду, что в 150 раз меньше числа вычислений «МЭСМ». Но этот недостаток компенсировался относительной компактностью всей системы и её энергоэффективностью. Вместо 60 квадратных метров, требуемых для полного монтажа «МЭСМ», «М–1» требовалось около 10 квадратных метров, а потребление тока при работе составляло 29 киловатт. По мнению Исаака Брука, такие вычислительные машины должны быть ориентированы для малых предприятий не оперирующих большим капиталом.

Вскоре «М–1» была значительно усовершенствована. Новое имя, присвоенное второму поколению, было такое же краткое, закономерное, но при этом броское «М–2». Должен сказать, что отношение к названиям техники в Советском Союзе и России у меня особое. И кто бы что не говорил насчет их грубости и неказистости, в сравнении с американскими аналогами, наши мне нравятся больше, и лично я не представляю, чтобы эмблема условных Эльбрусов писалась или называлась иноязычно.

Но давайте вернемся к нашей ЭВМ. «М–2» стала самым лучшим «компьютером» в Советском Союзе по соотношению цены, качества и производительности. К слову, в первом компьютерном шахматном турнире, в котором соревновались множества стран, тем самым презентуя возможности и результаты своих разработок в ИТ–сфере, «М–2» одержала безоговорочную победу.

Из-за своей крайне успешности тройка лучших вычислительных машин - «БЭСМ», «Стрела» и «М–2» встали на службу для решения нужд военной обороны страны, науки и даже народного хозяйства.

Что значит «Ранние ЭВМ»?


Все, о чем я рассказал выше, является вычислительной техникой первого поколения. Определяет эту классификацию то, что все они имели большие габариты, электронные лампы и элементные базы, а также высокое потреблении электроэнергии и, к сожалению, низкую надежность и ориентированность на узкую аудиторию (преимущественно физиков, инженеров и прочих научных деятелей). Магнитные барабаны и магнитные ленты использовались в качестве внешней памяти.



«IBM 701»

Возможно кому-то могло показаться, что так было только у нас, но нет. Например, ознакомившись с разработками своих коллег из Штатов, академик Николай Николаевич Моисеев увидел те же исполинских размеров вычислительные автоматы, вокруг которых копошатся замудренные физики и математики, облаченные в белые халаты, рьяно пытающиеся устранить возникающие одну за другой неполадки. В 50–е года гордостью Америки был «IBM 701», который определенно удостоен отдельного рассказа, но это потом. Его вычислительная мощность составляла 15 тыс. операций в секунду. Чуть позже, Лебедевым была представлена следующая разработка ЭВМ «М–20».

«М–20»



Работа за «М–20»

Число операций, которые могла обрабатывать «М–20» в секунду составляло 20 тыс., что на 5 тыс. больше, чем у западного конкурента. Также было введено некое подобие совмещения параллельных вычислений, благодаря увеличенному в два раза, в сравнении с «БЭСМ», объему оперативной памяти. Иронично, но всего было выпущено 20 единиц системы «М–20». Тем не менее, это не препятствовало тому, что «М–20» смогла зарекомендовать себя как самая производительная и многофункциональная ЭВМ, которая к тому же была самой надежной на фоне остальных. Возможность написания кода в мнемокодах - это лишь немногая часть того, что позволяла делать «М–20». Все научные вычисления, моделирования, проводимые в СССР в XX веке, преимущественно были выполнены именно на этой машине.



ЭВМ «Урал»

Период производства и эксплуатации ранних ЭВМ в Советском Союзе продолжался еще практически 20-30 лет. В начале 60–х было начато производство ЭВМ «Урал». За все время было выпущено порядка 150 единиц техники. Основной областью применения «Урала» стали экономические расчеты.

Заключение


На сегодня это все. Спасибо большое, что дочитали до конца. В следующих частях цикла мы рассмотрим историю ЕС ЭВМ (Единых систем электронных вычислительных машин), а также домашних компьютеров производимых некогда в Советском Союзе, и конечно же не забудем про современную технику Эльбрус.





error: Контент защищен !!