Презентация на тему принцип радиосвязи. Телевидение и развитие средств связи Презентация на тему радиосвязь и телевидение

Презентация к уроку " Принципы радиосвязи и телевидения" Русский ученый А. С. Попов в 1888 г. предсказал возможность передачи сигналов при помощи электромагнитных волн на далекие расстояния. Практическое решение этой проблемы он осуществил в 1896 г., передан впервые в мире на расстояние 250 м беспроволочную радиограмму из двух слов — Генрих Герц. .В эти же годы Т. Маркони, развивая идею радиосвязи, занялся вопросами изготовления радиоаппаратуры. В 1897 г., опередив скромного А. С. Попова, он получил патент на возможность передачи речи при помощи электромагнитных волн.

Просмотр содержимого документа
«презентация "Принципы радиосвязи и телевидения"»

Принципы радиосвязи и телевидения.

Подготовила учитель физики

Дадыка Оксана Александровна


Немного истории

Первое экспериментальное подтверждение электромагнитной теории Максвелла было дано в опытах Г. Герца в 1887 г.

Для получения электромагнитных волн Герц применил прибор, состоящий из двух стержней, разделенных искровым промежутком. При определенной разности потенциалов в промежутке между ними возникала искра – высокочастотный разряд, возбуждались колебания тока и излучалась электромагнитная волна. Для приема волн Герц применил резонатор – прямоугольный контур с промежутком, на концах которого укреплены небольшие медные шарики.


  • Русский ученый А. С. Попов в 1888 г. предсказал возможность передачи сигналов при помощи электромагнитных волн на далекие расстояния. Практическое решение этой проблемы он осуществил в 1896 г., передан впервые в мире на расстояние 250 м беспроволочную радиограмму из двух слов - Генрих Герц.
  • В эти же годы Т. Маркони, развивая идею радиосвязи, занялся вопросами изготовления радиоаппаратуры. В 1897 г., опередив скромного А. С. Попова, он получил патент на возможность передачи речи при помощи электромагнитных волн.

А.С. Попов


Источник радиоволн

  • Рождаются радиоволны при изменении электрического поля, например, когда через проводник проходит переменный электрический ток или когда через пространство проскакивают искры.

Для чего нужны радиоволны?

  • Открытие радиоволн дало человечеству массу возможностей. Среди них: радио, телевидение, радары, радиотелескопы и беспроводные средства связи. Всё это облегчало нам жизнь. С помощью радио люди всегда могут попросить помощи у спасателей, корабли и самолёты подать сигнал бедствия, и можно узнать происходящие события в мире.

Радиосвязь в годы Великой Отечественной войны

  • С первых дней Великой Отечественной войны радиосвязь стала важнейшим средством оперативного управления войсками и информирования населения огромной страны. «От Советского Информбюро» - эти слова, начиная с 24 июня 1941 г. и до конца войны, открывали сводки сообщений с фронта, которые тысячи людей ежедневно с волнением слушали.

Надежная радиосвязь – залог успеха

  • В первые месяцы войны противнику удалось разрушить значительную часть наших воздушных и полевых кабельных линий, что привело к длительным перерывам в работе проводной связи. Стало очевидно обеспечить надежное управление войсками и их тесное взаимодействие, особенно во время боев в тылу противника и, безусловно, в авиации, бронетанковых войсках и Военно-морском флоте, где радиосвязь являлась единственным средством связи. Во время войны крупнейшие отечественные радиозаводы и научно-исследовательские институты сумели усовершенствовать и модернизировать радиостанции, находящиеся на вооружении войск, и создать новые, более эффективные средства связи.

Модернизация радиостанций

Во время войны крупнейшие отечественные радиозаводы и научно-исследовательские институты сумели усовершенствовать и модернизировать радиостанции, находящиеся на вооружении войск, и создать новые, более эффективные средства связи. В частности, были изготовлены переносные ультракоротковолновые радиостанции, предназначавшиеся для стрелковых и артиллерийских частей, радиостанция РБМ-5 повышенной мощности, экономичная и надежная, которая использовалась и как личная радиостанция командующих армиями, корпусов и дивизий, несколько типов специальных танковых радиостанций, радиостанций воздушно-десантных войск, разнообразные конструкции радиоприемников.


Радиопомехи

  • Весьма успешно радиопомехами нарушалось управление немецкими соединениями и объединениями в январе-апреле 1945 г. во время Восточно-Прусской операции, в которой активное участие принимали 131-й и 226-й радио дивизионы спецназначения. Им удалось помешать врагу поддерживать устойчивую радиосвязь, хотя он располагал 175 радиостанциями в 30 радиосетях и на 300 радиочастотах. Всего в Кенигсбергской группировке противника был сорван прием около 1200, а в Земландской - 1000 радиограмм.

Важная роль

  • Исключительно важную роль сыграла радиосвязь при организации взаимодействия между фронтами, армиями и объединениями различных видов Советских Вооруженных Сил при выполнении ими общих задач. В этом отношении интересна организация радиосвязи Юго-Западного, Донского и Сталинградского фронтов в Сталинградской наступательной операции; Центрального, Степного и Воронежского фронтов, в битве под Курском; 1-го Прибалтийского и трех Белорусских фронтов в Белорусской стратегической операции; 1-го, 2-го Белорусских и 1-го Украинского фронтов в Берлинской операции и др.

И на последок…

Великая Отечественная война во многом определила развитие радиоэлектронного вооружения нашей армии.


  • В современной жизни мы привыкли ежедневно пользоваться телевизором, радио, многие имеют сотовые телефоны. Эти приборы являются приемниками электромагнитных волн, с помощью которых мы получаем информацию из телецентра, от радиостанции – смотрим телепередачу, слушаем музыку, беседуем с приятелями. Передача информации с помощью электромагнитных волн называется радиосвязью.
  • Изобретение радиосвязи не было случайностью. Оно явилось итогом многочисленных исследований и открытий. Основываясь на представлениях Эрстеда, Ампера и Фарадея о магнитном поле и развивая их, английский физик Дж. Максвелл разработал теорию электромагнитного поля и предсказал существование электромагнитных волн.
  • В 1887 году немецкий физик Г. Герц экспериментально подтвердил правильность теоретических выводов Максвелла, впервые получил электромагнитные волны и исследовал их свойства. Опыты Герца открыли перед человечеством возможность применения радиоволн для осуществления связи.
  • В России одним из первых занялся изучением электромагнитных волн преподаватель офицерских курсов в Кронштадте Александр Степанович Попов. 7 мая 1895 года на заседании Русского физико-химического общества в Петербурге он продемонстрировал действие своего прибора, явившегося, по сути дела, первым в мире радиоприемником. День 7 мая в нашей стране отмечается как День радио. Но не думайте, что первые передачи звучали так же, как в нынешнее время. Ведь был изобретен пока только радиотелеграф. Вот текст первой радиограммы: с помощью азбуки Морзе (т.е. длинных и коротких электромагнитных сигналов) Поповым были переданы всего два слова: «Генрих Герц» - в честь великого экспериментатора.
  • Это фотография приемника, который находится в Политехническом музее. В качестве детали, непосредственно «чувствующей» электромагнитные волны, был применен когерер. Он состоит из стеклянной трубочки, в которую вставлены два электрода, а между ними помещены металлические опилки. Сопротивление опилок резко уменьшается, когда через них проходит ток высокой частоты. Если после этого встряхнуть трубочку, то сопротивление опилок вновь увеличивается. Попов предложил оригинальный способ встряхивания когерера с помощью электромагнитного звонкового реле. Присоединив к когереру вертикальный провод, он создал простейшую антенну. Позже параллельно звонку был включен телеграфный аппарат, позволивший вести автоматическую запись сигналов.
  • Важнейшим этапом в развитии радиосвязи было создание в 1913 году генератора незатухающих электромагнитных колебаний. Стала возможной надежная и высококачественная радиотелефонная связь – передача музыки и речи с помощью электромагнитных волн.
  • Рассмотрим физические основы радиопередачи. Чтобы передать по радио речь или музыку, необходимо прежде всего превратить с помощью микрофона звуковые колебания в электромагнитные, т.е. в переменный ток, частота которого соответствует частоте передаваемого звука (20-20000 Гц). Но для радиосвязи необходимо использовать высокочастотные колебания, которые интенсивно излучаются антенной и могут в пространстве распространяться на большие расстояния. Для получения таких колебаний используется генератор (частота от нескольких сотен тысяч герц до сотен тысяч мегагерц). «Складывая» оба эти сигнала, мы получаем высокочастотный модулированный сигнал, который интенсивно излучается антенной и содержит информацию.
  • Электромагнитные волны достигают антенны приемника и вызывают электромагнитные колебания в приемном колебательном контуре, который состоит из конденсатора переменной емкости и катушки индуктивности. Изменяя емкость конденсатора, мы настраиваем контур на частоту той или иной радиостанции. В демодуляторе из модулированных колебаний выделяется низкочастотный информационный сигнал, который подается на громкоговоритель, превращающий электрический ток в звук. Таким образом, принцип радиосвязи заключается в том, что электромагнитные колебания, возбужденные в передающей антенне, сначала преобразуются в электромагнитные волны, а затем эти электромагнитные волны в приемной антенне снова преобразуются в электромагнитные колебания.
  • Электромагнитные волны, длина волны которых от 10 км до 0,05 мм, относятся к радиодиапазону. В свою очередь, радиоволны делятся на длинные, средние, короткие и ультракороткие. Радиовещание осуществляется на длинных, средних и УКВ (до 1м) волнах. Более короткие волны используются для телевизионного вещания, радиолокации, радиорелейной связи и космической связи.
  • В современной технике отражение радиоволн различными препятствиями находит широкое применение. Высокочувствительные приемники улавливают и усиливают отраженный сигнал с целью получить информацию о том, где находится тот предмет, от которого отразилась волна. Перед вами схема определения местоположения самолета радиолокатором. Радар посылает в импульсном режиме остронаправленную электромагнитную волну. Отраженный от самолета сигнал достигает антенны радиоприемника через время T, что позволяет вычислить расстояние от радара до самолета. Измерение угла места и азимута позволяет точно определить положение самолета в пространстве. Наиболее широко применяют радиолокацию в авиации, на флоте и в космонавтике. Очень большое значение имеет она в военном деле. Также радиолокационным методом измерили расстояние от Земли до Луны и планет Солнечной системы.
  • Телевидение является, пожалуй, наиболее важным и перспективным средством связи. Схема телевещания в основном совпадает со схемой радиосвязи. Однако здесь модулируется не только звуковой сигнал, но и сигнал изображения, получаемый с помощью специальных телевизионных электронно-лучевых трубок. Для передачи используются УКВ волны с длиной волны от 6м до 30см.
  • Телевидение – это не только телевещание. Телевидение участвует в освоении космоса: телевизионные камеры устанавливают на космических кораблях, луноходах и марсоходах, с их помощью на Землю передаются изображения поверхности планет и их спутников. Телевидение находит все более широкое применение в народном хозяйстве. Например, при помощи телекамер диспетчер со своего рабочего места может видеть необходимые ему участки цеха, железнодорожного узла, морского порта, речного причала. Телевизионные установки являются единственным средством наблюдения за состоянием подземных хранилищ и скважен. Соединение телефона с телевидением дало новое средство связи – видеотелефон.
  • Радиорелейная связь осуществляется с помощью деци- и сантиметровых волн, которые распространяются в пределах прямой видимости. Поэтому линии связи состоят из цепочки приемно-передающих радиостанций, находящихся на расстоянии 40-50 км друг от друга и имеющих мачты высотой 70-100 м. Техника передачи сигналов по линии похожа на передачу эстафеты: каждый ретранслятор, приняв сигнал, усиливает его и посылает следующему ретранслятору. Радиорелейные линии служат для осуществления сотовой мобильной связи и телевизионного вещания.
  • Для космической радиосвязи используются ретрансляционные спутники связи, которые запускаются на орбиты, имеющие форму сильно вытянутых эллипсов. Такие спутники связи позволяют осуществлять телевизионное вещание и телефонную связь на самые отдаленные регионы нашей страны и планеты.
  • Быстрейшему развитию радиотехники способствовало изобретение электронной лампы и создание на ее основе генератора незатухающих колебаний. «Ламповая» электроника занимала господствующее положение почти полвека, затем на смену ей пришли полупроводниковые приборы – транзисторная электроника. В последние десятилетия главным направлением развития полупроводниковой электроники является микроэлектроника. Большое значение в ее развитии имело создание интегральных схем. В 70х годах ХХ века были созданы большие интегральные схемы (БИС), а затем разработаны микроЭВМ - компьютеры.
  • В настоящее время создается глобальная система связи, которая охватывает всю планету. МЫ НЕ МЫСЛИМ СЕБЯ БЕЗ РАДИОСВЯЗИ!

Радиосвязь - передача и прием информации с помощью радиоволн, распространяющихся в пространстве без проводов. Виды радиосвязи: радиотелеграфная, радиотелеграфная, радиотелефонная и радиовещание, радиотелефонная и радиовещание, телевидение, телевидение, радиолокация. радиолокация.


Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни. Радиотелеграфная связь осуществляется путем передачи сочетания точек и тире, кодирующего букву алфавита в азбуке Морзе. В 1843 году американский художник Сэмюэл Морзе (1791 – 1872)изобрел телеграфный код. Он разработал для каждой буквы знаки из точек и тире. При передаче сообщения долгие сигналы соответствовали тире, а короткие – точкам. Код Морзе используется и в наши дни.


Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиовещание – передача в эфир речи, музыки, звуковых эффектов с помощью э/м волн. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиотелефонная связь предполагает передачу подобной информации только для приема конкретным абонентом. Радиолокация- обнаружение объектов и определение их координат с помощью отражения радиоволн. Расстояние от объекта до радиолокатора s =сt/2; с – скорость света; t- промежуток времени между t- промежуток времени между импульсами импульсами


Телевидение В основе телевизионной передачи изображений лежат три физических процесса: В основе телевизионной передачи изображений лежат три физических процесса: Преобразование оптического изображения в электрические сигналы Преобразование оптического изображения в электрические сигналы Передача электрических сигналов по каналам связи Передача электрических сигналов по каналам связи Преобразование переданных электрических сигналов в оптическое изображение Преобразование переданных электрических сигналов в оптическое изображение


Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп. Для преобразования оптического изображения в электрические сигналы использовано явление фотоэффекта, изученное А.Г. Столетовым. Для передачи телевизионных сигналов используется радиосвязь, основоположником которой был А.С. Попов. Идея воспроизведения изображения на люминесцирующем экране принадлежит также нашему соотечественнику Б.Л. Розингу. Русский инженер-изобретатель В.К. Зворыкин разработал первую передающую телевизионную трубку – иконоскоп.


ЦВЕТНОЕ ТЕЛЕВИДЕНИЕ позволяет передавать и воспроизводить цветные изображения подвижных и неподвижных объектов. Для этого в телевизионной передающей камере цветного телевидения изображение разделяется на 3 одноцветных изображения. Передача каждого из этих изображений осуществляется по тому же принципу, что и в черно-белом телевидении. В результате на экране кинескопа цветного телевизора воспроизводятся одновременно 3 одноцветных изображения, дающих в совокупности цветное. Первая система цветного телевидения механического типа была предложена в русским инженером И. А. Адамианом.


Изобретение радио Попов Александр Степанович ()- российский физик и электротехник, один из пионеров применения электромагнитных волн в практических целях, изобретатель радио.


Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц». Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. Сообщение о возможности практического применения электромагнитных волн для установления связи без проводов впервые сделал 7 мая 1895 года А.С. Попов. Этот день считается днем рождения радио. 24 марта 1896 на заседании физического отделения Российского физико-химического общества Попов при помощи своих приборов наглядно продемонстрировал передачу сигналов на расстояние 250 м, передав первую в мире радиограмму из двух слов «Генрих Герц».




В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в раз. В антенне под действием переменного электрического поля возникали вынужденные колебания свободных электронов с частотой, равной частоте э/м волны. Переменное напряжение с антенны поступало на когерер – стеклянную трубку, заполненную металлическими опилками. Под действием переменного напряжения высокой частоты в когерере возникают электрические разряды между отдельными опилками, и его сопротивление уменьшается в раз.


Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн. Сила тока в катушке электромагнитного реле возрастает, и реле включает электрический звонок. Так регистрировался прием э/м волны антенной. Молоточек эл. звонка, ударяя по когереру, встряхивал опилки и возвращал его в исходное положение – приемник снова был готов к регистрации э/м волн.


Несколько позднее создал подобные же приборы и провел с ними эксперименты итальянский физик и инженер Г. Маркони. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. В 1897 он получил патент на применение электромагнитных волн для беспроволочной связи. Благодаря большим материальным ресурсам и энергии, Маркони, не имевший специального образования, добился широкого применения нового способа связи. Попов же свое открытие не запатентовал. Попов же свое открытие не запатентовал.


Увеличение дальности связи В начале 1897 Попов осуществил радиосвязь между берегом и кораблем, а в 1898 дальность радиосвязи между кораблями была доведена до 11 км. Большой победой Попова и едва зародившейся радиосвязи было спасение 27 рыбаков с оторванной льдины, унесенной в море. Радиограмма, переданная на расстояние 44 км, позволила ледоколу своевременно выйти в море. Работы Попова были отмечены золотой медалью на Всемирной выставке 1900 в Париже. В 1901 на Черном море Попов в своих опытах достигал дальности в 148 км.


К этому времени в Европе уже существовала радиопромышленность. Работы Попова в России не получили развития. Отставание России в этой области угрожающе нарастало. И когда в 1905 в связи с начавшейся русско- японской войной потребовалось большое количество радиостанций, ничего не оставалось, как заказать их иностранным фирмам.


Отношения Попова с руководством морского ведомства обострились, и в 1901 он переехал в Петербург, где был профессором, а затем первым выборным директором Электротехнического института. Заботы, связанные с выполнением ответственных обязанностей директора, совсем расшатали здоровье Попова, и он скоропостижно скончался от кровоизлияния в мозг.


Даже получив большую известность, Попов сохранил все основные черты своего характера: скромность, внимание к чужим мнениям, готовность идти навстречу каждому и посильно помогать нуждающимся в помощи. Когда работы по применению радиосвязи на кораблях привлекли к себе внимание заграничных деловых кругов, Попов получил ряд предложений переехать для работы за границу. Он решительно отверг их. Вот его слова: «Я горд тем, что родился русским. И если не современники, то, может быть, потомки наши поймут, сколь велика моя преданность нашей Родине и как счастлив я, что не за рубежом, а в России открыто новое средство связи».




Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Задающий генератор вырабатывает гармонические колебания высокой частоты (несущая частота более 100 тыс.Гц). Микрофон преобразует механические звуковые колебания в электрические той же частоты. Микрофон преобразует механические звуковые колебания в электрические той же частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Модулятор изменяет по частоте или амплитуде высокочастотные колебания с помощью электрических колебаний низкой частоты. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Усилители высокой и низкой частоты усиливают по мощность высокочастотные и звуковые (низкочастотные) колебания. Передающая антенна излучает модулированные электромагнитные волны. Передающая антенна излучает модулированные электромагнитные волны.


Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Приемная антенна принимает э/м волны. Э/м волна, достигшая приемной антенны, индуцирует в ней переменный ток той же частоты, на которой работает передатчик. Детектор выделяет из модулированных колебаний низкочастотные. Детектор выделяет из модулированных колебаний низкочастотные. Динамик преобразует э/м колебания в механические звуковые колебания. Динамик преобразует э/м колебания в механические звуковые колебания.


Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. Модуляция передаваемого сигнала – кодированное изменение одного из его параметров. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. В радиотехнике применяются амплитудная, частотная и фазовая модуляция. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Амплитудная модуляция - изменение амплитуды колебаний высокой (несущей) частоты колебаниями низкой (звуковой) частоты. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор. Детектирование (демодуляция)- выделение из модулированных колебаний высокой частоты звукового сигнала. Детектирование осуществляется устройством, содержащим элемент с односторонней проводимостью: вакуумный или проводниковый диод-детектор.


Распространение радиоволн РАДИОВОЛНЫ, электромагнитные волны с частотой меньше 6000 ГГц (с длиной волны λ больше 100 мкм). Радиоволны с различной λ отличаются по особенностям при распространении в околоземном пространстве и по методам генерации, усиления и излучения. Их делят на сверхдлинные (λ > 10 км), длинные (10-1 км), средние (м), короткие (м), УКВ (λ 10 км), длинные (10-1 км), средние (1000-100 м), короткие (100-10 м), УКВ (λ


Распространение радиоволн Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.


Космическая связь Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций. Спутники связи используются для ретрансляции телевизионных программ на всю территорию страны, для мобильной телефонной связи. Спутник принимает сигналы и посылает их другой наземной станции, находящейся на расстоянии в несколько тысяч километров от первой. Принятые наземной станцией сигналы от спутника связи усиливаются и посылаются приемникам других станций.


Радар Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Кристиан Хюльсмайер, проживая в Дюссельдорфе изобрел радиолокатор. Днем рождения изобретения можно считать 30 апреля 1904 года, когда Хюльсмайер получил от Императорского бюро по патентам удостоверение на свое изобретение. А 18 мая радар впервые был испытан на кельнском железнодорожном мосту... Кристиан Хюльсмайер Кристиан Хюльсмайер Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому времени рассчитывается расстояние до объекта. Учёные используют радары для измерения расстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля. Радар, или радиолокатор, посылает направленный пучок радиоволн. Автомобиль, самолёт или любой другой крупный металлический предмет, встретившийся на пути радиолуча отражает его, как зеркало. Приёмник радара улавливает отражение и измеряет время прохождения импульса до отражающего объекта и обратно. По этому времени рассчитывается расстояние до объекта. Учёные используют радары для измерения расстояния до других планет, метеорологи- для выявления грозовых фронтов и предсказания погоды, дорожная инспекция- чтобы определить скорость движения автомобиля.


Аварийная радиоспасательная служба Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ). Это совокупность ИСЗ, движущихся на круговых околополярных орбитах, наземных пунктов приема информации и радиобуев, устанавливаемых на самолетах, судах, а также переносимых альпинистами. При аварии радиобуй посылает сигнал, который принимается одним из спутников. ЭВМ, расположенная на нем, вычисляет координаты радиобуя и передает информацию в наземные пункты. Система создана в России(КОСПАС) и США, Канаде, Франции(САРКАТ).


Темы сообщений Жизнь и деятельность А.С. Попова Жизнь и деятельность А.С. Попова История изобретения телевидения История изобретения телевидения Основные направления развития средств связи Основные направления развития средств связи Здоровье человека и сотовый телефон Здоровье человека и сотовый телефон Радиоастрономия Радиоастрономия Цветное телевидение Цветное телевидение История создания телеграфа, телефона История создания телеграфа, телефона Интернет(история создания) Интернет(история создания)

Передача изображенияДля передачи изображения, его сначала надо
преобразовать в электрические сигналы. На станции
с которой передается сигнал, его преобразуют в
последовательность электрических импульсов.
Потом данными сигналами модулируются колебания
высокой частоты.

Телевидение и его развитие

Телевидение и его развитие
Развитие средств связи
осуществляется полным
ходом. Еще 20 лет назад
не в каждой квартире
можно было встретить
домашний проводной
телефон. А сейчас уже
никого не удивишь
наличием мобильного
телефона у ребенка. Об
спутниковом телевидении
можно и не упоминать.

Иконоскоп

Для преобразования
изображения в
электрический сигнал
используют прибор,
называемый иконоскоп.
Иконоскоп не является
единственным способом
преобразования
изображения в поток
электрических импульсов.

Этапы развития средств связи

Английский ученый Джеймс Максвелл в 1864 году
теоретически предсказал существование
электромагнитных волн.
1887 году экспериментально в Берлинском
университете обнаружил Генрих Герц.
7 мая 1895 году А.С. Попов изобрел радио.
В 1901 году итальянский инженер Г. Маркони впервые
осуществил радиосвязь через Атлантический океан.
Б.Л. Розинг 9 мая 1911 года электронное телевидение.
30 годы В.К. Зворыкин изобрел первую передающую
трубку –иконоскоп.

Современные направления развития средств связи

Радиосвязь
Телефонная связь
Телевизионная связь
Сотовая связь
Интернет
Космическая связь
Фототелеграф (Факс)
Видеотелефонная связь
Телеграфная связь

Радиосвязь

– передача и прием информации с помощью
радиоволн, распространяющихся в пространстве без
проводов.

Виды радиосвязи.

Радиотелеграфная
Радиотелефонная
Радиовещание
Телевидение.

Космическая связь

КОСМИЧЕСКАЯ СВЯЗЬ, радиосвязь или оптическая
(лазерная) связь, осуществляемая между
наземными приемно-передающими станциями и
космическими аппаратами, между несколькими
наземными станциями через спутники связи,
между несколькими космическими аппаратами.

Фототелеграф

Фототелеграф, общепринятое сокращённое
название факсимильной связи
(фототелеграфной связи).
Вид связи для передачи и приема нанесенных
на бумагу изображений (рукописей, таблиц,
чертежей, рисунков и т.п.).
Устройство, осуществляющее такую связь.

Первый фототелеграф

В начале века немецким
физиком Корном был создан
фототелеграф,
который ничем
принципиально не отличается
от современных барабанных
сканеров. (На рисунке справа
приведена схема телеграфа
Корна и портрет
изобретателя,
отсканированный и
переданный на расстояние
более 1000 км 6 ноября 1906
года).

Шелфорд Бидвелл (Shelford
Bidwell), британский физик,
изобрел «сканирующий
фототелеграф». Для
передачи изображений
(диаграмм, карт и
фотографий) в системе
использовался материал
селен и электрические
сигналы.

Видеотелефонная связь

Персональная видеотелефонная
связь на UMTS-оборудовании
Новейшие модели телефонных
аппаратов имеют
привлекательный дизайн,
богатый выбор аксессуаров,
широкую функциональность,
поддерживают технологии
Bluetooth и wideband-readyаудио, а также XML-интеграцию с
любыми корпоративными
приложениями

Виды линии передачи сигналов

Двухпроводная линия
Электрический кабель
Метрический волновод
Диэлектрический волновод
Радиорелейная линия
Лучеводная линия
Волоконно–оптическая линия
Лазерная связь

Волоконно-оптические линии связи

Волоконно-оптические линии связи (ВОЛС) в настоящее время считаются
самой совершенной физической средой для передачи информации.
Передача данных в оптическом волокне основана на эффекте полного
внутреннего отражения. Таким образом оптический сигнал, передаваемый
лазером с одной стороны, принимается с другой, значительно удаленной
стороной. На сегодняшний день построено и строится огромное
количество магистральных оптоволоконных колец, внутригородских и
даже внутриофисных. И это количество будет постоянно расти.

В ВОЛС применяют электромагнитные волны оптического
диапазона. Напомним, что видимое оптическое излучение лежит в
диапазоне длин волн 380...760 нм. Практическое применение в
ВОЛС получил инфракрасный диапазон, т.е. излучение с длиной
волны более 760 нм.
Принцип распространения оптического излучения вдоль
оптического волокна (ОВ) основан на отражении от границы сред
с разными показателями преломления (Рис. 5.7). Оптическое
волокно изготавливается из кварцевого стекла в виде цилиндров с
совмещенными осями и различными коэффициентами
преломления. Внутренний цилиндр называется сердцевиной ОВ, а
внешний слой - оболочкой ОВ.

Лазерная система связи

Довольно любопытное решение для
качественной и быстрой сетевой связи
разработала немецкая компания
Laser2000. Две представленные модели
на вид напоминают самые обычные
видеокамеры и предназначены для связи
между офисами, внутри офисов и по
коридорам. Проще говоря, вместо того,
чтобы прокладывать оптический кабель,
надо всего лишь установить изобретения
от Laser2000. Однако, на самом-то деле,
это не видеокамеры, а два передатчика,
которые осуществляют между собой
связь посредством лазерного излучения.
Напомним, что лазер, в отличие от
обычного света, например, лампового,
характеризуется монохроматичностью и
когерентностью, то есть лучи лазера
всегда обладают одной и той же длиной
волны и мало рассеиваются.

Впервые осуществлена лазерная связь между спутником и самолетом 25.12.06, Пн, 00:28, Мск

Французская компания Astrium впервые в мире
продемонстрировала успешную связь по
лазерному лучу между спутником и самолетом.
В ходе испытаний лазерной системы связи,
прошедших в начале декабря 2006 года, связь на
расстоянии почти 40 тыс. км была осуществлена
дважды - один раз самолет Mystere 20 находился
на высоте 6 тыс. м, в другой раз высота полета
составила 10 тыс. м. Скорость самолета составляла
около 500 км/ч, скорость передачи данных по
лазерному лучу - 50 Мб/с. Данные передавались на
геостационарный телекоммуникационный спутник

Распространение радиоволн.

Ионосфера – это ионизированная верхняя часть атмосферы, начинающаяся с расстояния примерно 50-90 км от поверхности земли и переходящая в межпланетную плазму. Ионосфера способна поглощать и отражать э/м волны. От неё хорошо отражаются длинные и короткие волны. Длинные волны способны огибать выпуклую поверхность Земли. За счет многократного отражения от ионосферы радиосвязь на коротких волнах возможна между любыми точками на Земле. УКВ не отражаются ионосферой и свободно проходят через неё; они не огибают поверхность Земли, поэтому обеспечивают радиосвязь только пределах прямой видимости. Телевещание возможно только в этом частотном диапазоне. Для расширения зоны приема телевизионных передач, антенны передатчиков устанавливаются на возможно большей высоте, для этой же цели используют ретрансляторы –специальные станции, принимающие сигналы, усиливающие их и излучающие дальше. УКВ способны обеспечивать связь через ИСЗ, а также связь с космическими кораблями.





error: Контент защищен !!