Что такое мультиплексирование. Временное мультиплексирование. Смотреть что такое "Мультиплексирование" в других словарях

В протяженных СПД емкости магистральных линий связи обычно значительно превышают емкости передач отдельных приложений. Это делается с целью одновременной передачи множества этих приложений. С целью повышения эффективности передающей среды и ее адаптации под множество разнородных приложений применяется передача одновременно сразу нескольких информационных сигналов в одном носителе – мультиплексирование. Другими словами.:д ля использования высокоскоростных характеристик, предоставляемых широкополосными каналами широко применяют так называемое мультиплексорное подключение.

Общее назначение мультиплексора – согласование большого числа низкоскоростных каналов с с меньшим (как правило одним) числом высокоскоростных.

С1 Свых Сi-пропускная способность каналов.

М
С2

1)Если Свх=Свых- то система называется мультиплексором.

2)Если Свх>Свых- то статический мультиплексор или концентратор.

3)Если Свх<Свых- то коммутатор.


Мультиплексирование с частотным уплотнением (FDM) при использовании каналов ГТС имеет хорошие характеристики по дальности связи, уступая временному уплотнению по скорости передачи данных.

Пример мультиплексора с частотным уплотнением – МЧУ.


При использовании данного МЧУ возможно использование полосы частот для передачи данных и речевых сообщений, а так же для передачи телеметрической информации.

Разновидностью FDM является применяемое волновое мультиплексирование WDM , применяемое и опто-волоконных системах. Преимущественно используется область спектра от l=1.3 нм (230 Тгц) до 1.6 нм (188 Тгц). Для плотного волнового мультиплексирования используется область спектра 1530-1560 нм.

WDM широко применяется при так называеемом инверсном мультиплексировании когда широкополосный сигнал при передаче размещается в нескольких каналах с меньшей полосой пропускания.

Пример использования инверсного WDM мультиплексирования в протяженной ОЛС.


Мультиплексный сигнал, представленный множесвом длин волн лучше противостоит влиянию дисперсии и вносимому шуму оптических усилстелей EDFA в протяженной свутоволоконной линии.

Для получения больших скоростей передачи данных используются мультиплексоры с временным уплотнением используется посимвольная или побитная синхронизация. Рассмотрим на примере мультиплексора сВУ, объединяющего четыре направления A,B,C,D как реализуется тот и другой способ синхронизации.


Выходная посылка с МВУ в высокоскоростном канале для МВУ.

А)с посимвольной (побайтной, объектной) синхронизацией.

Тайм слоты



Б)с побитной синхронизацией.


В)При асинхронном (статическом) временным разделением каналов.



При посимвольной синхронизации – возможно большее сжатие, т.к. стартовые стеновые сигналы могут исключаться, а при побитовой синхронизации это невозможно и кроме того при побитовой синхронизации может привести к потере адресной информации и к потере всей последовательности из-за передачи по неправильным адресам, коды побитовая синхронизация реализуется проще. Поместив простой МВУ в синхронный модем можно получить многовходовый (многоканальный) модем. На аналоговый ТЛФ Модем с МВУ (модем / мульдекс) до 19200 бит/сек. Аналоговый широкополосный канал МВУ с чередованием битов и байтов со статистическим уплотнением до 64 кбит/сек.

С контролем ошибок протокол HDLC.

Скорость передачи через внутренний общий интерфейс между МВУ и модемом равна суммарной пропускной способности синхронных каналов данных например 9600 бит/сек=4 х 2400 бит/сек.

МСВУ (мультиплексоры статистического временного уплотнения) – динамически распределяют пропускную способность общего канала. Фиксированный формат кадра в современных системах не используется. Кадры общего канала могут меняться как по длине так и по составу данных из каналов данных. Каждая позиция в кадре выделяется каналу данных только тогда, когда в нем имеются данные для передачи. Если в какой-то промежуток времени активным является только один канал данных. Все позиции в кадре могут быть выделены этому каналу. Если активными являются все каналы одновременно, в действие вступает приоритетная система, не позволяющая какому-либо одному каналу захватить все позиции в кадре. К МСВУ можно подключить больше каналов данных, чем к МВУ с синхронным уплотнением и фиксированным кадром, поскольку уменьшаются расходы времени на пересылку пустых символов. МВУ с чередованием знаков и фиксированным кадром фактически сняты с производства. В настоящее время имеется широкий спектр МВВУ с возможностью подключения от 4/8 до нескольких сотен каналов.


Одним из преимуществ МСВУ является использование протоколов типа ARQ(ARQ – automatic reguest for retransmission) - автоматический запрос повторной передачи в общем канале: любой блок данных с искажениями в результате воздействия линейных помех должен быть передан повторно. Обычно используются дуплексные протоколы типа HDLC, используемого, например, на канальном уровне стека протоколов Х25..

Изготовители МСВУ обычно указывают число асинхронных каналов данных которые могут быть подключены при данной канальной скорости (бит/сек). Для приближенного расчета можно принять, что суммарная скорость асинхронных каналов может быть в 4 раза больше скорости передачи синхронного общего канала (но ни один из каналов данных не должен превышать скорости передачи по общему каналу!)

Пример приближеннного расчета количества асинхронных каналов. Общий канал – 9600 бит/сек. å Скорость асинхронных каналов 4 х 9600 = 38400 бит/сек., такая пропускная способность может обеспечить следующее число каналов а)восемь асинхронных по 4800 бит/сек, б)16 асинхронных по 2400 бит/сек, в)32 асинхронных по 1200 бит/сек.

Сначала статистическое мультиплексирование было использовано в сетях с протоколами Х.25,позже в сетях Frame Relay и ATM , речь о которых пойдет при рассмотрении технологий глобальных вычислительных сетей (ГВС).

Ниже в таблице приведены сравнительные характеристики синхронного и статистического мультиплексирования.

Как видно из таблицы, преимущества одного метода можно рассматривать в некоторой степени как недостатки другого.

Передача данных по широкополосным уплотненным каналам при большой удаленности ведется в соответствии со стандартами, регламентирующими скорость передачи данных.

В США и странах, придерживающихся аналогичных стандартов, применяются система Т1 (1.544 Мбит/сек) и Т3 (45 Мбит/сек). В Европе аналогом систем Т1 и Т3 является Е1 (2 Мбит/сек) и Е3 (34 Мбит/сек). Основная причина популярности цифровых линий в том, что они обеспечивают высокоскоростную передачу данных, практически на 99% свободную от ошибок. Цифровые линии доступны в различных формах, включая стандарты DDS (синхронное соединение точка-точка 2.4;4,8;9,6;56 кбит/сек).

Т1- самый распространенный вид цифровой линии. Использует две пары проводов с передачей данных на скорости 1.544 Мбит/сек. Т1 делит канал на 24 подканала и опрашивает каждый 8000 раз в секунду. При каждом обращении к каналу передаются 8 бит, скорость по подканалу – 64 кбит/сек.

Т3- Выделение линии Т-3 передают данные со скоростью от 6 до 45 мбит/сек. Наибольшая прпускная способность среди общедоступных сегодня линий. Может заменить несколько линий Т1.

Мультиплексирование с разделением времени

Принцип действия мультиплексора прост: поступающие по нескольким входящим низкоскоростным линиям сигналы передаются в отведенном для каждого из них частотном диапазоне или интервале времени по высокоскоростной исходящей линии. На противоположном конце высокоскоростной линии эти сигналы вычленяются, или демультиплексируются.

В соответствии со способом уплотнения технологии мультиплексирования можно разделить на две основные категории: мультиплексирование с разделением по частоте (Frequency Division Multiplexing, FDM) и мультиплексирование с разделением по времени (Time Division Multiplexing, TDM). При частотном мультиплексировании частотный спектр делится на логические каналы, причем каждый пользователь получает этот канал в свое распоряжение на время разговора. При временном мультиплексировании пользователям периодически выделяется вся полоса, но только на краткий период времени.

ВРЕМЕННОЕ МУЛЬТИПЛЕКСИРОВАНИЕ

При мультиплексировании с разделением по времени каждое устройство или входящий канал получают в свое распоряжение всю пропускную способность линии, но только на строго определенный промежуток времени каждые 125 мкс (см. Рисунок 2). Последнее значение соответствует циклу дискретизации, так как при ИКМ каждую 1/8000 долю секунды необходимо производить измерение амплитуды аналогового сигнала. Время передачи восьмиразрядного значения мгновенной амплитуды называется квантом времени (time slot) и равно длительности передачи восьми импульсов (один для каждого бита). Последовательность квантов времени, следующих с вышеуказанным интервалом, образует временной канал. Совокупность каналов за один цикл дискретизации составляет кадр.

При временном мультиплексировании вся пропускная способность исходящей линии предоставляется на фиксированный промежуток времени входящей линии меньшей емкости.

В Европе, как и в остальном мире, за исключением США и Японии, стандартной системой является ИКМ-32/30 (или E-1) с 32 временными каналами по 64 кбит/с, в которой 30 каналов используются в качестве информационных для передачи голоса, данных и т. д., а два - в качестве служебных, причем один из служебных каналов предназначен для сигнализации (служебных сигналов установления связи), другой - для синхронизации. Как нетрудно подсчитать, общая емкость системы составляет 2,048 Мбит/с.

Система E-1 образует так называемую первичную группу. Вторичную группу E-2 образуют 4 канала E-1 общей емкостью 8,448 Мбит/с, третичную систему E-3 - четыре канала E-2 (или шестнадцать каналов E-1) общей емкостью 34,368 Мбит/с, а четверичную группу - четыре канала E-3 общей емкостью 139,264 Мбит/с. Эти системы образуют европейскую плезиохронную цифровую иерархию.

Принцип последовательного мультиплексирования каналов проиллюстрирован на Рисунке 3. Четыре канала E-1 мультиплексируются в один канал E-2, причем на этом и последующих уровнях мультиплексирование осуществляется побитно, а не побайтно, как это имело место в случае мультиплексирования 30 голосовых каналов в один канал E-1. Суммарная емкость четырех каналов E-1 составляет 8,192 Мбит/с, в то время как полная емкость E-2 равна в действительности 8,448 Мбит/с. Избыточные биты используются для обрамления и восстановления синхронизации. Затем четыре канала E-2 мультиплексируются в один канал E-3 и т. д.

рис.3

Как малые притоки сливаются в одну большую реку, так и низкоскоростные линии объединяются в высокоскоростные с помощью иеархии мультиплексоров.

Принятый в Северной Америке и Японии, стандарт определяет канал T-1 (формат кадра DS1). Канал T-1 состоит из 24 мультиплексированных голосовых каналов, причем изначально предполагалось, что амплитуда аналогового сигнала будет выражаться 7-разрядным двоичным числом, а один бит использоваться для целей управления (сигнализации). Кроме того, помимо 192 бит каждый кадр имеет еще один бит для синхронизации. Таким образом, общая емкость канала T-1 составляет 1,544 Мбит/с. Однако в конце концов все 8 бит были отведены под данные, а сигнализация стала осуществляться одним из следующих двух способов. При сигнализации по общему каналу 193-й бит в каждом нечетном кадре служит для целей синхронизации, а в каждом четном - для сигнализации. Суть другого метода заключается в том, что каждый канал имеет свой собственный подканал для передачи сигнальной информации (один бит в каждом шестом кадре).

В локальных и особенно в протяженных сетях емкости магистральных линий связи обычно значительно превышают емкости передач отдельных приложений. Это делается с целью одновременной передачи множества таких приложений. Дополнительно, сами приложения могут иметь разную природу, например, это может быть передача постоянного битового потока или передача файлов данных, С целью повышения эффективности передающей среды (носителя) и ее адаптации под множество разнородных приложений применяется передача одновременно сразу нескольких информационных сигналов в одном носителе - мультиплексирование.

Различают два основных вида мультиплексирования:

Частотное мультиплексирование FDM: каждому сигналу отводится определенная доля всей частотной полосы носителя, так что на одном носителе существуют одновременно сразу несколько сигналов.

Временное мультиплексирование TDM: сигналу каждого приложения выделяется вся полоса носителя, но на короткий промежуток времени - таймслот, так что мультиплексный сигнал представляется в виде последовательности сменяющих друг друга тайм-слотов, ответственных за разные приложения. В рамках TDM различают синхронное мультиплексирование (каждому приложению соответствует тайм-слот (возможно несколько тайм-слотов) с определенным порядковым номером в периодической последовательности слотов, и асинхронное или статистическое мультиплексирование, когда приписывание тайм-слотов приложениям происходит более свободным образом, например, по требованию.

На рис. 5.1 показаны схемы размещения каналов при FDM и TDM.

Устройство, принимающее несколько каналов от разных приложений (например, голос, видео, данные) и передающее их в виде мультиплексного сигнала на одном носителе, называется мультиплексором MUX, а устройство, выполняющее обратную функцию на другом конце - демультиплексором DEMUX. Обычно в системах двунаправленной связи функции мультиплексирования и демультиплексирования совмещаются в одном устройстве, которое также называется мультиплексором.

Частотное мультиплексирование FDM

Частотное мультиплексирование (рис. 5.1 а) распространено в системах беспроводной радиосвязи, в мобильных телефонных системах, в абонентских телевизионных системах, включая кабельное телевидение и телефонию. Каналы, представленные в мультиплексном сигнале, могут быть как аналоговыми, так и цифровыми.

В сетях широковещательного телевидения сначала исходные низкочастотные телевизионные сигналы от передающих устройств смещаются посредством модуляции в определенные, отведенные специально для них области спектра - каждой области отводится полоса 6,5 МГц. Затем такой мультиплексный широкополосный сигнал (до 860 МГц) распространяется по эфиру или в коаксиальной кабельной системе от локальных студий кабельного телевидения к абонентам.

Разновидностью FDM является волновое мультиплексирование WDM, применяемое в волоконно-оптических системах передач. Преимущественно используется область спектра от 1,3 нм (230 ТГц) до 1,6 им (188 ТГц). Для плотного волнового мультиплексирования используется область спектра 15301560 нм.

Синхронное временное мультиплексирование

Синхронное мультиплексирование объединяет n низкоскоростных цифровых каналов (или n периодически повторяющихся равных по длительности тайм-слотов) внутри одного носителя, С целью лучшей синхронизации непрерывного битового потока, в мультиплексорах используются таймеры с высоким стандартом частоты. На рис. 5.1 б показана схема следования таймслотов при12-канальном TDM. Тайм-слоты с номером 1 соответствуют первому приложению, с номером 2 - второму и т.д. Емкость отдельного приложения - емкость тайм-слота - равна W/n, где W - полная полоса носителя. Емкие приложения могут занимать полосу в несколько тайм-слотов.

Рис. 5.1. Основные виды мультиплексирования

Если от одного из приложений не поступают данные, мультиплексор не сбрасывает тайм-слоты этого приложения в скоростном канале и оставляет для него прежнюю полосу W/n. Никакому другому приложению эта полоса не доступна. Более того, ни одно из приложений не может получить большую полосу пропускания, чем ту, которая отводится. Это особенность синхронного мультиплексирования.

Мультиплексирование может происходить на октетном, битовом или кадровом уровне.

При мультиплексировании на октетном уровне последовательности в 8

битов от каждого из n приложений - октеты - циклически сменяют друг друга. Задержка на время буферизации одного октета возникает между входным низкоскоростным и выходным мультиплексным потоками.

При мультиплексировании на битовом уровне происходит побитовое смешивание входных потоков. Более критичными, в этом случае, становятся требования к временным характеристикам, но и уменьшается задержка, вносимая мультиплексором. В городских коммутируемых телефонных сетях мультиплексирование на битовом уровне используется при построении скоростных мультиплексных каналов.

При мультиплексировании на кадровом уровне кадры (специальные битовые последовательности с заголовком, сигнальными полями и полями данных) из входных низкоскоростных каналов смешиваются в выходном мультиплексном канале. Этот вид мультиплексирования характерен при построении асинхронных мультиплексоров,

Логическая топология определяет характер движения данных в мультиплексном канале. Три основных типа логической топологии могут иметь синхронные мультиплексные системы: соединение "точка-точка", цепное соединение и кольцевое соединение, рис. 5.2. Допускаются более сложные смешанные логические топологии.

Рис. 5.2. Основные типы логической топологии мультиплексных систем

Рис. 5.3. физическая топология "двойное ТОМ кольцо" повышает надежность сети в случае повреждения одного из сегментов сети или выхода из

строя одного из мультиплексоров

Физическая топология определяет структуру кабельной системы. Для повышения надежности сложные мультиплексные сети, использующие логическую топологию "кольцо", делают с использованием физической топологии "двойное кольцо", рис. 5.3. В нормальном состоянии активно первичное кольцо - по вторичному кольцу данные не идут. При повреждениях канала связи или одного из мультиплексоров происходит свертывание логического кольца с восстановлением его целостности, при котором активизируется вторичное кольцо - общая целостность сети также сохраняется. Физическая топология "двойное кольцо" используется и в сетях SDH, а также в некоторых локальных сетях Token Ring, DQDB, FDDI.

По каждому из каналов мультиплексор может поддерживать одну из шести функций выделения, добавления или пропускания каналов (drop-add-pass), рис. 5.4:

1. "Drop & Add" (выделение и добавление канала). Эту функцию могут поддерживать мультиплексоры как при цепной (на промежуточных узлах), так и при кольцевой логических топологиях. При цепной топологии один выходной канал может быть заменен на другой, например, при использовании специальных мультиплексоров для межстудийного обмена в сетях цифрового кабельного телевидения. При кольцевой топологии этой функцией могут обладать два или более мультиплексоров, которые сообща используют данный TDM канал, например, при организации удаленной связи сетей Ethernet или Token Ring. Фактически происходит подмена информации в соответствующих тайм-слотах.

2. "Drop & Pass" (выделение и пропускание). Эта функция наиболее характерна для физической топологии "цепная линия". Основная задача - размножить информационный поток. Структура ретранслируемых в мультиплексный канал тайм-слотов остается без изменения.

3. "Pass Only" (только пропускание). Эта функция обычно автоматически отрабатывается мультиплексором, если в физический слот мультиплексора, соответствующий данному каналу (номеру

4. "Terminate & Add" (прервать и добавить). Эта функция подменяет информацию в тайм-слотах соответствующего канала на новую, взятую из входного низкоскоростного канала. Прежняя информация не выводится наружу и становится недоступной как для текущего, так и для последующих мультиплексоров. Эта функция фактически предназначена для начального (мастер) мультиплексора при физической топологии "цепная линия".

5. "Drop Only" (только выделение). Эта функция характерна для конечного мультиплексора при физической топологии "цепная линия".

6. "Terminate" (прерывание). Эта функция характерна для конечного мультиплексора при физической топологии "цепная линия". Функция автоматически отрабатывается конечным мультиплексором, если в физический слот мультиплексора, соответствующий данному каналу (номеру тайм-слота), не установлен ни один модуль.

Рис. 5.4. функции выделения, добавления и пропускания канала

В практических реализациях скоростной мультиплексный канал строится преимущественно на основе волоконно-оптического интерфейса. Существует огромное разнообразие мультиплексоров, использующих волоконно-оптическую TDM-магистраль.

Оптический модем-мультиплексор Optimux производства PAD. Внешний вид и схема включения модема показаны на рис. 5.5, а в табл. 5.1 приведены технические характеристики.

Рис. 5.5. Внешний вид и схема подключения оптического модема-

мультиплексора Optimux производства RAD Data Communications

Аналогичные оптические модемы-мультиплексоры, также широко используемые на российском рынке, выпускаются фирмамиADC Telecommunications - продукт Quad Fiber Loop Converter, 4xE1 ; и Pan Dacom - продукт FME-H, 6xE1 )

Таблица 5.1. Основные технические характеристики оптического модема-

мультиплексора Optimux производства PAD Data Communications

Модульный ТОМ мультиплексор MagnumPlus фирмы ADC Kentrox. Это -

более универсальное и более мощное решение, допускающее передачу множества различных протоколов. Его основные характеристики приведены в табл. 5.2.

Отметим, что логическая топология взаимодействия мультиплексоров MagnumPlus по TDM магистрали базируется на кольце, в то время как физическое соединение может быть как точка-точка, кольцо, или цепная линия. Кольцевая логическая топология необходима для дистанционного мониторинга и управления мультиплексорами на основе TDM магистрали.

При инициализации TDM магистрали одно из устройств автоматически выбирается мастером - по нему синхронизируются все остальные устройства. При подключении мультиплексоров через сеть SDH, синхронизация происходит от SDH магистрали.

Таблица 5.2. Основные технические характеристики мультиплексора

Модули MagnumPlus, рис. 5.6:

Интерфейсные модули (IN/OUT). Чтобы удовлетворить тем или иным специфическим требованиям, имеется большое разнообразие модулей, среди которых - модули Ethernet Switch (разъем AUI, BNC, F/0), Token Ring 4 или 16 Мбит/с (разъем DB9), Е1 (G.703);

Модули питания. Питание может осуществляться от 48V DC, 110V AC, 220V AC. Для обеспечения защиты на случай выхода из строя блока питания допускается установка до двух блоков питания с распределяемой нагрузкой;

Модуль контрольной логики. Необязательный модуль, позволяющий осуществлять дистанционное SNMP управление и мониторинг;

Модули общей логики. Обеспечивают все необходимые возможности мультиплексирования и демультиплексирования на основе волоконнооптического интерфейса (155 Мбит/с) или интерфейса на коаксиальном кабеле

(DS3, 45 Мбит/с).

Рис. 5.6. Вид шасси мультиплексора MagnumPlus производства ADC Kentrox

Процесс мультиплексирования представляет собой процедуру уплотнения данных для передачи такого потока по общей линии связи с целью значительного повышения пропускной способности информационного канала (Рис 1). Коммутационное устройство, способное создавать уплотненные потоки данных, называется мультиплексором (MUX). Обратный процесс, т.е. разуплотнение данных, называетсядемультиплексированием. А устройство с такой коммутацией именуется демультиплексором (DEMUX).

Рис 1. Мультиплексирование и демультиплексирование данных

Существует три основных метода мультиплексирования:
- частотное мультиплексирование (FDM, Frequency Division Multiplexing) или, более точно, мультиплексирование с разделением частоты
- временное мультиплексирование (ТDM, Time Division Multiplexing) или мультиплексирование с разделением времени
- волновое мультиплексирование (WDM, Wavelength Division Multiplexing) или мультиплексирование с разделением по длине волны.

Частотное мультиплексирование (FDM).
Мультиплексирование с разделением частоты (Рис 2) используется в телефонных сетях для организации передачи голосового сигнала, а также может применяться в кабельном телевидении.

Рис 2. Частотное мультиплексирование и демультиплексирование

Основная идея частотного мультиплексирования заключается в следующем. На первом этапе идет процесс разделения общего широкополосного канала связи на отдельные полосы частот (подканалы), на которые накладываются абонентские частотные диапазоны. На втором этапе, чтобы избежать взаимного влияния уплотненных пользовательских диапазонов, в каждый подканал добавляется страховая частотная неинформативная полоса, так называемая полоса расфильтровки. Речевой спектр гармоник включает в себя ширину частот от 300 Гц до 3400 Гц. Таким образом, размер каждого подканала равен 4 кГц, где 3,1 кГц - голосовой информативный диапазон + 0,9 кГц - полоса расфильтровки. В методе частотного мультиплексирования предусмотрено три стандартизованных уровня иерархии уплотненных абонентских подканалов:
1-ый уровень, базовая группа - 12 абонентских подканалов в полосе шириной в 48 кГц от 60 кГц до 108 кГц. Этот стандарт наиболее распространенный.
2-ой уровень, супергруппа - 5 базовых группа (60 абонентских подканалов) в полосе шириной в 240 кГц от 312 кГц до 552 кГц.
3-ий уровень, главная группа - 10 супергрупп (600 абонентских подканалов) в полосе шириной 2520 кГц от 564 кГц до 2048 кГц.
Надо сказать, что в использовании метода мультиплексирования с разделением частоты появился некий парадокс. С одной стороны, эта техника уплотнения аналоговых данных (FDM) стала уступать технике уплотнения цифровых данных (TDM) из-за своего существенного недостатка – появления шумов при наращивании усиления голосового сигнала. А с другой стороны с использованием оптического волокна в качестве новой среды передачи данных явился на свет (оборот в тему!) метод волнового уплотнения светового излучения (WDM). А волна и частота, как известно, – обратно пропорциональные параметры. По сему, частотное мультиплексирование логически “влилось” в волновое мультиплексирование. Повысился статус!

Временное мультиплексирование (TDM).
Мультиплексирование с разделением по времени (Рис 3) широко применяются в сетевых технологиях PDH, SDH/SONET, АТМ, Ethernet, PON.

Рис 3. Временное мультиплексирование и демультиплексирование

Суть этого метода мультиплексирования с разделением времени заключается в следующем: с помощью TDM-мультиплексора входные абонентские каналы последовательно подключаются к общему каналу связи на определенный интервал времени, так называемый тайм-слот, а на приемной стороне демультиплексор разуплотняет общий поток на отдельные выборки и распределяет их по соответствующим приемным абонентским каналам.

Волновое мультиплексирование (WDM)
Мультиплексирование с разделением дины волны появилось с возникновением оптического волокна. Волновое мультиплексирование - процедура уплотнения спектра оптических инфракрасных волн, использующая уникальное свойство оптического волокна на WDM-мультиплексирование (Рис 4). Суть этого явления такова: на одном оптическом волокне с помощью волнового оптического мультиплексора появилась возможность уплотнить целый спектр несущих лазерных волн и соответственно на стадии приема - разуплотнить этот световой поток на отдельные волны, используя оптический демультиплексор. Такая возможность значительно увеличивает пропускную способность волоконно-оптических линий связи (ВОЛС).

Рис 4. Волновое мультиплексирование и демультиплексирование

Путь развития способов мультиплексирования с разделением по длине волны шел по следующей схеме: WDM → DWDM → HDWDM → CWDM, где
1-ый этап: 2-х и 3-х канальное мультиплексирование (WDM)
2-ой этап: плотное мультиплексирование (DWDM) до 88 каналов
3-ий этап - высокоплотное мультиплексирование (HDWDM) до 256 каналов
4-ый этап - разреженное мультиплексирование (CWDM) до 16 каналов.
Исторически первыми появились двухволновые WDM-сплиттеры, работающие в дуплексном режиме на длинах волн из второго и третьего окон прозрачности оптического волокна в 1310 нм и 1550 нм (см. в рубрике “Полезная информация” нашего сайта под названием “Окна прозрачности и спектральные диапазоны оптического волокна”). Позже в WDM-сплиттер была добавлена третья волна в 1490 нм. Такие недорогие мультиплексоры в силу своей простоты при установки и подключении незаменимы в оптических сетях типа PON. Пара волн 1310/1490 нм, работая в интерактивном режиме, используется в Интернете и IP-телефонии. А волна 1550 нм предназначена для кабельного телевидения. Появление плотного мультиплексирования DWDM (Dense WDM) было связано с потребностью увеличения пропускной способности оптических сетей (PON) и волоконно-оптических линий связи (ВОЛС). Но только тогда DWDM стало реальным и эффективным, когда в ВОЛС начали внедрять оптические эрбиевые усилители (EFDA). И тут встала необходимость выбрать и стандартизировать три главных определяющих параметра при таком способе уплотнения оптического сигнала: опорная волна, диапазон рабочих частот и шаг между каналами. Выбор пал на волну 1550 нм из второго окна прозрачности оптического волокна. Задание спектрального диапазона и расстояния между каналами определяет, так называемый, частотный план или частотная сетка. Для DWDM по рекомендации ITU-T G.694.1 определен частотный план в волновом диапазоне 1528.77 – 1568.77 нм с шагом 0.8 нм или в частотном измерении в промежутке 196.1 – 191.1 ТГц с шагом 100 ГГц. В настоящее время разработан частотный план с уменьшенным шагом в 50 ГГц (0.4 нм) для высокоплотного мультиплексирования HDWDM (High Dense WDM), а в экспериментальных системах уже предлагается HDWDM c частотными сетками с канальными промежутками в 25 ГГц (0.2 нм) и 12.5 ГГц (0.1 нм)!
Однако процесс высокоплотного мультиплексирования не может быть бесконечен и безусловно имеет свой логический предел. И главным критерием востребованности систем типа HDWDM является прежде всего цена приемо-передающих компонентов ВОЛС. Для сравнительно недорогого и качественного волнового уплотнения было разработано разреженное CWDM (Coarse WDM) мультиплексирование с частотным планом (ITU-T G.694.2) в диапазоне 1270 – 1610 нм с шагом 20 нм, Такая частотная сетка задает 18 частот для мультиплексирования от 4 до 16 каналов.
Широкое применение оптического волокна в технологиях PON и FTTH с использованием волнового спектрального мультиплексирования в каналах ВОЛС привело к кардинальному прорыву в области построения актуальных сетей передачи данных с высочайшей скоростью и небывалой пропускной способностью.

Теперь о множественном доступе. Множественный доступ - это способ разделения общего ресурса канала связи между участниками информационного обмена. При этом эффективность и достаточность множественного доступа как такового и как процедуры коллективного взаимодействия пользователей, может состояться только при наличии технологии, значительно увеличивающей пропускную способность канала связи. В этом контексте множественный доступ в зависимости от того, какая схема работает на увеличение пропускной способности канала связи, разделяется на следующие типы:

С использованием методов мультиплексирования
- множественный доступ с разделением частоты (FDMA)
- множественный доступ с разделением времени(TDMA)
- множественный доступ с разделением по длине волны(WDMA).

С использованием других методов
- множественный доступ с передачей полномочия или маркера (ТРМА)
- множественный доступ с прослушиванием несущей и обнаружения коллизий (CSMA/CD).

Множественный доступ ТРМА использует детерминированный маркерный метод передачи данных, иногда такой способ именуется эстафетным, так как право передачи запускается по эстафете от абонента к абоненту. Этот метод предполагает обязательно кольцевую топологию расположения абонентов, причем строятся два кольца: одно кольцо является резервным в случае аварийных ситуациях или сбоях. Суть метода такова. По кольцу непрерывно вращается маркер (token), специальный управляющий пакет. Отсюда еще одно название метода – токеновый! Так вот, если маркер свободный - он дает право абоненту на передачу. Абонент, получивший свободный маркер, делает маркер занятым, присоединяет к нему свой пакет информации и пускает такую посылку по кругу. Остальные абоненты в кольце анализируют эту посылку на предмет адресата. Если абоненту не адресована посылка, он пускает ее по кругу. Если абонент находит в посылке свой адрес, он принимает инфо, маркер помечает как принятый и пускает посылку снова по кольцу. Передающий абонент, получивший обратно свою посылку с отметкой о приеме, удаляет свой информационный пакет, помечает token (маркер) как свободный и отправляет чистенький token дальше по кольцу. Все снова повторяется. Множественный доступ с передачей маркера успешно применяется в технологиях Token Ring и FDDI.

Множественный доступ CSMA/CD использует метод коллективного доступа с опознаванием несущей частоты и обнаружением коллизий. Такой множественный метод доступа не позволяет создать коллизию, т.е. ситуацию одновременной передачи данных по общему каналу нескольких пользователей. Информационной единицей является кадр, наложенный (модулированный) на несущую частоту (5-10 МГц). Заголовок кадра содержит адреса отправителя и получателя кадра. Принцип работы такого доступа основан на двух основополагающих моментах: первый, каждый абонент определяет ситуацию, когда он может передать кадр, второй, каким образом должен вести себя передающий абонент в случае одновременного начала передачи кадра другим абонентом. Ситуация – свободен канал связи или нет, определяется прохождением по каналу несущей информацию (кадр) частоты. Чтобы уловить суть алгоритма данного метода, рассмотрим работу абонента №1. Итак, абонент №1, которому необходимо передать данные, определил, что в канале связи присутствует несущая, т.е. канал связи занят: наш абонент берет технологическую паузу (9.6 мкс). После паузы он опять переходит в режим прослушивания канала связи на предмет несущей частоты, Несущая – есть! Кто-то ведет передачу, абонент №1 снова берет технологическую паузу. Несущей – нет! Канал связи свободен, начинается передача кадра. Сразу же передающий абонент №1 следит за состоянием канала связи на факт обнаружения коллизии. Все пользователи участвуют в прослушке канала, анализируя пришедший кадр, и тот абонент, чей адрес записан в заголовке кадра, начинает прием кадра. Остальные абоненты игнорируют “чужой” кадр. Если абонент №1 не обнаружил коллизию в течение всей передачи кадра, процесс приема-передачи инфо заканчивается корректно. Если абонент №1 обнаружил факт коллизии, передача кадра прекращается, абонент №1 вбрасывает в канал связи специальный сигнал, получив который одновременно сработавший пользователь прекращает свою передачу, а наш абонент берет случайную паузу, после которой он пытается продолжить передачу текущего кадра по вышеуказанному алгоритму. В схеме алгоритма заложено 16 попыток, чтобы корректно завершить прием-передачу текущего кадра. Если из-за коллизий все-таки не получается завершить передачу текущего кадра в рамках данного алгоритма, такой злосчастный кадр просто отбрасывается передающим абонентом №1 и его приемным визави. Далее – опять кто первый! Множественный метод с опознаванием несущей и обнаружения коллизий хорошо зарекомендовал себя в сетях Ethernet.

Не затрагиваем другие схемы множественного доступа, которые применяются в беспроводной связи таких, как: CDMA (с кодовым разделением), OFDMA (с ортогональным разделением частот), SDMA (с пространственным мультиплексированием). Эта тема другой статьи.

В предыдущих уроках мы рассмотрели такое типичное для компьютерных сетей оборудование, как мосты, коммутаторы и маршрутизаторы. Однако ввиду все более тесной интеграции компьютерных и телефонных сетей (сетей связи вообще) для администраторов и даже пользователей знание общих принципов организации телефонных сетей становится все более обязательным, в особенности если они работают с глобальными сетями. Поэтому в данном уроке мы и решили рассмотреть такую технологию (точнее, технологии), как мультиплексирование.

Прокладка и эксплуатация низкоскоростной магистральной линии между двумя АТС обходится почти во столько же, во сколько и высокоскоростной линии, так как основные затраты приходятся отнюдь не на покупку медного или оптического кабеля, а, вообще говоря, на рытье траншеи для укладки кабеля. Для передачи нескольких телефонных разговоров по одной физической линии телефонные компании и разработали технологии уплотнения, или мультиплексирования.

МУЛЬТИПЛЕКСИРОВАНИЕ В ДВУХ СЛОВАХ

Принцип действия мультиплексора прост: поступающие по нескольким входящим низкоскоростным линиям сигналы передаются в отведенном для каждого из них частотном диапазоне или интервале времени по высокоскоростной исходящей линии. На противоположном конце высокоскоростной линии эти сигналы вычленяются, или демультиплексируются.

В соответствии со способом уплотнения технологии мультиплексирования можно разделить на две основные категории: мультиплексирование с разделением по частоте (Frequency Division Multiplexing, FDM) и мультиплексирование с разделением по времени (Time Division Multiplexing, TDM). При частотном мультиплексировании частотный спектр делится на логические каналы, причем каждый пользователь получает этот канал в свое распоряжение на время разговора. При временном мультиплексировании пользователям периодически выделяется вся полоса, но только на краткий период времени.

ЧАСТОТНОЕ МУЛЬТИПЛЕКСИРОВАНИЕ

Как известно, человеческая речь может быть адекватно передана частотами в диапазоне от 300 до 3400 Гц, т. е. необходимый частотный интервал составляет 3100 Гц. Однако при мультиплексировании нескольких голосовых каналов каждому из них выделяется диапазон в 4000 Гц, чтобы они не перекрывались. Частота каждого канала увеличивается каждая на свою величину, кратную 4 кГц, затем каналы комбинируются. В результате каналы разносятся по всему спектру частот данной линии. Каналы отделены друг от друга так называемыми защитными интервалами (см. Рисунок 1).

Рисунок 1.
При частотном мультиплексировании весь частотный диапазон разбивается на несколько каналов. Чтобы каналы не перекрывались, они отделены друг от друга защитными интервалами.

Схемы мультиплексирования FDM в достаточной мере стандартизованы. Наибольшее распространение получил стандарт, согласно которому двенадцать голосовых каналов шириной 4000 Гц мультиплексируются в диапазоне частот от 60 до 108 кГц. Такой блок называется группой. Диапазон с 12 до 60 кГц используется иногда для другой группы.

Разновидностью технологии частотного мультиплексирования, используемой в случае оптических линий связи, является мультиплексирование по длине волны (Wavelength Division Multiplexing, WDM). Физически мультиплексирование осуществляется следующим образом: несколько волокон подводится к призме (или чаще дифракционной решетке), световые пучки пропускаются через призму и попадают в общее волокно. На противоположном конце пучки разделяются с помощью другой призмы. Если каждый подводимый пучок ограничен своим частотным диапазоном, то они не будут перекрываться. Оптические системы полностью пассивны и, как результат, более надежны.

ИМПУЛЬСНО-КОДОВАЯ МОДУЛЯЦИЯ

Современный мир становится все более компьютеризованным и, как следствие, цифровым; разумеется, эта тенденция не обошла стороной и телефонные сети. Цифровые системы получают все более широкое распространение, и в итоге частотное мультиплексирование уступает свое место временному мультиплексированию. Однако, прежде чем человеческую речь, по природе своей аналоговую, можно будет передавать по цифровой сети, ее надо преобразовать в дискретную форму. Это достигается с помощью импульсно-кодовой модуляции (Pulse-Code Modulation). Поэтому в современных цифровых телефонных сетях связи временное мультиплексирование тесно связано с импульсно-кодовой модуляцией.

Согласно теореме Котельникова, частота дискретизации должна вдвое превышать максимальную частоту спектра частот аналогового сигнала для его корректного воспроизведения, таким образом, измерения амплитуды должны производиться 8000 раз в секунду в случае человеческой речи. Значение амплитуды приближается 8-разрядным двоичным числом, поэтому скорость передачи должна составлять 64 кбит/с. Как следствие, в цифровых сетях информационный канал на 64 кбит/с - базовый для исчисления скорости всех более емких каналов связи.

ВРЕМЕННОЕ МУЛЬТИПЛЕКСИРОВАНИЕ

При мультиплексировании с разделением по времени каждое устройство или входящий канал получают в свое распоряжение всю пропускную способность линии, но только на строго определенный промежуток времени каждые 125 мкс (см. Рисунок 2). Последнее значение соответствует циклу дискретизации, так как при ИКМ каждую 1/8000 долю секунды необходимо производить измерение амплитуды аналогового сигнала. Время передачи восьмиразрядного значения мгновенной амплитуды называется квантом времени (time slot) и равно длительности передачи восьми импульсов (один для каждого бита). Последовательность квантов времени, следующих с вышеуказанным интервалом, образует временной канал. Совокупность каналов за один цикл дискретизации составляет кадр.

Рисунок 2.
При временном мультиплексировании вся пропускная способность исходящей линии предоставляется на фиксированный промежуток времени входящей линии меньшей емкости.

В Европе, как и в остальном мире, за исключением США и Японии, стандартной системой является ИКМ-32/30 (или E-1) с 32 временными каналами по 64 кбит/с, в которой 30 каналов используются в качестве информационных для передачи голоса, данных и т. д., а два - в качестве служебных, причем один из служебных каналов предназначен для сигнализации (служебных сигналов установления связи), другой - для синхронизации. Как нетрудно подсчитать, общая емкость системы составляет 2,048 Мбит/с.

Система E-1 образует так называемую первичную группу. Вторичную группу E-2 образуют 4 канала E-1 общей емкостью 8,448 Мбит/с, третичную систему E-3 - четыре канала E-2 (или шестнадцать каналов E-1) общей емкостью 34,368 Мбит/с, а четверичную группу - четыре канала E-3 общей емкостью 139,264 Мбит/с. Эти системы образуют европейскую плезиохронную цифровую иерархию.

Принцип последовательного мультиплексирования каналов проиллюстрирован на Рисунке 3. Четыре канала E-1 мультиплексируются в один канал E-2, причем на этом и последующих уровнях мультиплексирование осуществляется побитно, а не побайтно, как это имело место в случае мультиплексирования 30 голосовых каналов в один канал E-1. Суммарная емкость четырех каналов E-1 составляет 8,192 Мбит/с, в то время как полная емкость E-2 равна в действительности 8,448 Мбит/с. Избыточные биты используются для обрамления и восстановления синхронизации. Затем четыре канала E-2 мультиплексируются в один канал E-3 и т. д.

Рисунок 3.
Как малые притоки сливаются в одну большую реку, так и низкоскоростные линии объединяются в высокоскоростные с помощью иеархии мультиплексоров.

Принятый в Северной Америке и Японии, стандарт определяет канал T-1 (формат кадра DS1). Канал T-1 состоит из 24 мультиплексированных голосовых каналов, причем изначально предполагалось, что амплитуда аналогового сигнала будет выражаться 7-разрядным двоичным числом, а один бит использоваться для целей управления (сигнализации). Кроме того, помимо 192 бит каждый кадр имеет еще один бит для синхронизации. Таким образом, общая емкость канала T-1 составляет 1,544 Мбит/с. Однако в конце концов все 8 бит были отведены под данные, а сигнализация стала осуществляться одним из следующих двух способов. При сигнализации по общему каналу 193-й бит в каждом нечетном кадре служит для целей синхронизации, а в каждом четном - для сигнализации. Суть другого метода заключается в том, что каждый канал имеет свой собственный подканал для передачи сигнальной информации (один бит в каждом шестом кадре).

СИНХРОННАЯ ЦИФРОВАЯ ИЕРАРХИЯ

Необходимость принятия единого стандарта для систем связи в Европе и Америке, а также потребность в повышении максимальной скорости передачи и встроенных средствах управления сетью связи привели к разработке синхронной цифровой иерархии SDH (к сожалению, североамериканский вариант этого стандарта под названием SONET несколько отличается от европейского, хотя эти различия не столь существенны, как в случае, например, иерархии каналов T-1, T-2... и E-1, E-2...).

В SDH синхронный транспортный модуль (STM-1) образует нижний уровень иерархии. Он эквивалентен синхронному транспортному сигналу STS-3c в иерархии SONET с емкостью 155,52 Мбит/с. Четыре модуля STM-1 мультиплексируются в STM-4 (=STS-12c) c емкостью 622,08 Мбит/с, а четыре модуля STM-4 - в STM-12 (=STS-48c) с емкостью 2,488 Гбит/с. Иерархия определяет и более высокие уровни.

Мультиплексирование осуществляется побайтно, а не побитно, т. е., например, когда четыре потока данных STM-1 объединяются в STM-4, мультиплексор сначала отправляет один байт из первого потока, затем один байт из второго и т. д. по кругу.

Одно из наиболее важных отличий синхронной от плезиохронной иерархии - это возможность выделения нужного канала вплоть до уровня E-1 без демультиплексирования всего транспортного сигнала. Это привело к появлению принципиально иного типа мультиплексоров - мультиплексоров с добавлением и выделением отдельных каналов (в английской терминологии - add-drop multiplexer, а в русской технической литературе их кратко называют мультиплексорами ввода/вывода).

Кроме того, многие мультиплексоры стали выполнять и функции кроссовой коммутации (впрочем, может быть и наоборот, но это уже спор о курице и яйце). Мультиплексоры с кроссовой коммутацией (cross-connect multiplexor) позволяют осуществлять концентрацию и разделение потоков (функции мультиплексирования и демультиплексирования) наряду с переключением цифровых сигналов с одного канала на другой в соответствии с определенными правилами (функции коммутации).

ИНВЕРСНОЕ МУЛЬТИПЛЕКСИРОВАНИЕ

В случае, когда организации необходимо иметь линию определенной пропускной способности, а предлагаемые емкости или слишком малы (например, Е-1), или слишком велики (скажем, E-3), тогда-то и пригодится устройство под названием инверсный мультиплексор. Данное устройство позволяет распределять входящий поток данных между несколькими исходящими линиями с меньшей емкостью, чем совокупный объем получаемых данных в единицу времени (см. Рисунок 4). Таким образом, например, заказчик может получить канал, эквивалентный по емкости двум E-1. Преимуществом такого подхода по сравнению с независимым подключением двух линий E-1 состоит, например, в том, что инверсный мультиплексор позволяет динамически распределять нагрузку между ними.

Рисунок 4.
Инверсное мультиплексирование заставляет вспомнить течение реки: огибая острова, она разбивается на протоки, которые затем опять сливаются воедино.

ЗАКЛЮЧЕНИЕ

В данном уроке мы рассмотрели основные технологии мультиплексирования, применяемые в телефонных сетях. Телефония все теснее переплетается с миром компьютеров, во всяком случае, все чаще и чаще они используют одну и ту же транспортную сеть как в глобальных, так и локальных сетях, не говоря уже о том, что такая "горячая" технология ATM появилась, как один из вариантов широкополосной цифровой сети с интеграцией услуг. И, кстати говоря, ATM было бы правильнее назвать асинхронным временным мультиплексированием. Предшественник ATM, технология асинхронного временного разделения (Asynchronous Time Division, ATD), был разработан в лабораториях France Telecom как вариация TDM. Ее важнейшим отличием от TDM стало динамическое предоставление канала, а не на все время соединения (телефонного разговора); заголовок же позволял определить, к какому соединению принадлежат данные. Как следствие, доступная емкость использовалась более эффективно. Теперь наследник ATD претендует на роль единой технологии как глобальных, так и локальных сетей. Но это уже тема другого разговора.

Дмитрий Ганьжа - ответственный редактор LAN. С ним можно связаться по адресу:





error: Контент защищен !!