Как вырабатывается электроэнергия. Постоянный ток. Изменение направления электрического тока

Опыт европейцев показывает, что отапливать помещения горючим нерентабельно. На Западе люди получают тепло при помощи электроэнергии. Установка электрических котлов не является выгодной в том случае, если дом или квартира снабжается центральной электроэнергией. Получать необходимый энергетический ресурс можно самостоятельно, умные люди придумали множество самодельных устройств. Мы расскажем о тех альтернативных источниках электроэнергии, своими руками которые сделать проще всего.

Конструкция для выработки электроэнергии

Ветер является самым распространенным источником энергии . Заранее предупреждаем, что соорудить оборудование для получения электричества своими руками не очень просто, но результат работы устройства не заставит себя долго ждать. В ходе разработки человеку понадобится разобраться в структуре заводской технологии и научится собирать её самостоятельно. Основными составляющими установки являются:

  • двигатель
  • мультипликатор
  • генератор постоянного тока
  • контролер заряда аккумулятора
  • аккумулятор
  • преобразователь напряжения

Существуют две разновидности ветряных двигателей: вертикальные и горизонтальные. Их отличие заключается в порядке расположения оси. Вертикальный альтернативный источник энергии для дома своими руками сделать немного проще, чем горизонтальный. На практике каждой из устройств имеет свои преимущества. Коэффициент полезного действия вертикально-осевого оборудования не превышает отметку 15%. За счет низкого уровня шума их эксплуатация в домашних условиях не вызывает дискомфорта. Объем произведенного электричества зависит от силы ветра, поэтому хозяину не придется ломать голову в случае изменения направления воздушного потока.

Бесплатная энергия для дома, получаемая при помощи горизонтальной оси, является полной противоположностью вертикальному типу. Оборудование отличается высокими показателями КПД, но нуждается в установке датчиков, которые реагируют на смену направления ветра. Недостатком горизонтального ветродвигателя является высокий уровень шума. Такой вариант больше подходит для использования в промышленных условиях.

Чтобы получить альтернативное электричество в больших количествах, нужно правильно подобрать количество лопастей и размеры пропеллера. Самоделы выработали принципиальную схему сбора устройства. Всё зависит от того, какие результаты хочет получить хозяин. При диаметре пропеллера 2 метра нужно устанавливать следующее количество лопастей:

  • 10 Ватт – 2 штуки;
  • 15 Ватт – 3 штуки;
  • 20 Ватт – 4 штуки;
  • 30 Ватт – 6 штук;
  • 40 Ватт – 8 штук.

Для диаметра пропеллера 4 метра действуют такие характеристики:

  • 40 Ватт – 2 лопасти;
  • 60 Ватт – 3 лопасти;
  • 80 Ватт – 4 лопасти;
  • 120 Ватт – 6 лопастей.

На основании полученных результатов можно сделать вывод, что альтернативная электроэнергия поможет в обогреве помещения. Остается только узнать мощность электрического котла и рассчитать нужный размер пропеллера. При расчете за основу бралась скорость ветра, равная четырем метрам в секунду. В Восточной Европе такой показатель является среднестатистическим.

Лопасть - важная составляющая ветрогенератора

Изготовляя альтернативные источники энергии для дома своими руками, особое внимание стоит уделить внимание лопастям. Парусные приспособления, которые устанавливаются на старые мельницы, не являются эффективными, поскольку имеют низкий КПД. Целесообразно использовать аэродинамические приспособления, имитирующие облик крыльев самолёта. По большому счету, материал не имеет значения, лопасти можно даже выстрогать из дерева. Если вы решили применить традиционный пластик, то помните, что при малом количестве лопастей в установке возникнут вибрации. Поэтому желательно поместить в устройство, которое поможет получить альтернативные виды энергии, 6 лопастей диаметром 3 метра. Лучше всего использовать ПВХ трубу, предназначенную для напорного водопровода. Для получения аэродинамических свойств, края изделия нужно обточить и отшлифовать. Для сборки пропеллера понадобится «звездочка», которая изготовляется из горизонтали.

Чтобы получить электричество своими руками качественно, необходимо сбалансировать ветроколеса. Сделать это можно в домашних условиях, в ходе выполнения тестовых работ проверяются лопасти на предмет произвольного движения. Если пропеллер находится в статическом положении, то вибрации ему не страшны.

Сгенерировать альтернативную энергетику своими руками при помощи ветра невозможно без заводского оборудования. В любом случае понадобится двигатель постоянного тока, который стоит копейки в сравнении с ценой на фабричные ветрогенераторы. Далее изготовление оборудования происходит по следующему сценарию:

  • сборка рамы для надежности конструкции;
  • установка поворотного узла, за которым будет закреплён генератор и ветровое колесо;
  • монтаж подвижной боковой лопаты с пружинной стяжкой (необходима для защиты устройства во время ураганного ветра). Если этого механизма не будет, то изготовленный генератор электричества своими руками будет повёрнут в направлении ветра;
  • присоединяем пропеллер к генератору, который в свою очередь крепится на станину, а станина к раме;
  • к раме прикрепляется лопата на растяжке;
  • поворотный механизм соединяется с рамой;
  • генератор крепить к токосъемнику, от которого исходят провода, идущие в электрическую часть.

Чтобы собрать электрическую часть, нужно иметь элементарные познания в физике. К аккумулятору присоединяем диодный мост, через который проходит контроллер напряжения и предохранители. От аккумулятора происходит распределение альтернативной электроэнергии для дома.

Изготовление простого ветрогенератора своими руками

Солнечные батареи

Пластины для получения электроэнергии при помощи Солнца

Сравнительно недавно человечество научилось получать бесплатную энергию для дома при помощи Солнца. Получаемый ресурс используется для отопления помещения и обеспечения его электроэнергией, а также можно совмещать два процесса. К преимуществам солнечной энергии можно отнести такие факторы:

  1. вечность ресурса;
  2. высокий уровень экологичности;
  3. бесшумность;
  4. возможность переработки в другие альтернативные виды энергии.

Если нет возможности или желания покупать готовые солнечные батареи, то устройство можно сконструировать самостоятельно. Мы предлагаем вам простую установку, чтобы вы проверили на деле её эффективность, а затем сделали несколько таких устройств и создали целую тепловую станцию для дома.

Пластина меди перед сборкой солнечной батареи

Итак, альтернативный источник тока можно изготовить из простого листа меди, для простого оборудования нам понадобится порядка 45 квадратных сантиметров. Сначала нужно обрезать кусок металла до нужных нам размеров. Ориентируйтесь на то, чтобы лист поместился на спирали электроплитки. Перед началом процедуры важно убрать с меди лишние элементы и устранить дефекты. Затем можно положить лист на электроплитку, которая должна обладать мощностью не меньше 1100 ватт.

В процессе нагрева материал несколько раз поменяет свой цвет, что связано с особенностями законов физики и химии. После того, как медь покроется черным цветом, засеките полчаса. По истечении этого времени слой оксида станет толстым. Изготовляя солнечный альтернативный источник энергии для дома своими руками, после выключения плитки подождите некоторое время, пока медь остынет. Охлаждение понадобится для того, чтобы окись отслоилась от меди. Когда лист температура листа будет равна комнатной температуре, необходимо промыть материал под теплой водой. И ни в коем случае нельзя отделять остатки медной окиси. Опись технологии сборки устройства докажет вам, что получить альтернативное электричество без особых усилий очень просто.

Сначала вырезаем еще один лист меди, который будет соответствовать размеру обработанного куска. Оба листа сгибаем и помещаем их внутрь пластиковой бутылки, и делаем это таким образом, чтобы они не касались друг друга. К двум пластинам прикрепляем зажимы типа «Крокодил». Теперь остается всего лишь присоединить провода к полюсам: на плюс идет кабель от «чистой» меди, а на минус – от обработанной на плитке.

Компактная солнечная батарея небольшой мощности

Устройство для получения электричества своими руками практически готово. На конечной стадии остается в отдельном сосуде перемешать 3 ложки соли с простой водой. Несколько минут смесь мешаем, чтобы соль полностью растворилась в жидкости, после чего образовавшийся раствор выливаем в пластиковую бутылку. Если сконструировать сразу несколько таких устройств, то можно получить хорошие и бесплатные альтернативные источники энергии, своими руками изготовленные за короткий отрезок времени. Более простого самодельного варианта для обогрева помещения не придумать.

Солнечные батареи - принцип работы и производства

Получение электроэнергии из недр земли

Прокладка коммуникаций теплового насоса

Для получения электрической или тепловой энергии из недр земли необходимо соорудить геотермальный тепловой насос. Это устройство является универсальным, оно способно добывать нужный нам продукт как из грунта, так и из грунтовых вод. В последнее время такой альтернативный вид энергии пользуется большой популярностью.

Чтобы получать электричество из земли, для начала нужно проложить трубопровод. Если энергия будет исходить из воды, то тепловой насос помещаем в водоём. По принципу работы тепловой насос ничем не отличается от холодильника. Разница заключается лишь в том, что в нашем случае теплота не сбрасывается в окружающую среду, а поглощается оттуда.

Альтернативные источники электроэнергии своими руками бывают четырех типов:

  • Вертикальный коллектор. Устанавливается в пробуренные скважины, глубина каждой из которых может составлять до 150 метров. Эта методика актуальна тогда, когда площадь участка не позволяет установить горизонтальный тепловой насос;
  • Горизонтальный коллектор. Для его расположения нужно прорыть грунт по площади на глубину полутора метров. Получаемая таким образом альтернативная энергетика своими руками доступна практически для каждого частного дома. Опыт показывает, что эта схема является наиболее эффективной;
  • Водный коллектор. Актуален в том случае, если рядом с домом есть река или озеро. Трубопровод нужно прокладывать на глубине, которая ниже глубины промерзания. В противном случае устанавливать систему придется каждый год. Этот способ получения энергии считается самым дешевым;
  • Грунтовой водяной коллектор. Получение таким способом альтернативного электричества возможно только при помощи специалистов. Процесс прокладки труб требует соблюдения жестких требований. Особенность установки заключается в том, что после прохождения по всей схеме, отдавшая свою теплоту вода возвращается в землю. В дальнейшем она нагревается при помощи грунта и становится пригодной для обогрева помещения и получения электроэнергии.

Преимущества тепловых насосов

Горизонтальный коллектор

Альтернативные источники энергии для дома своими руками, в качестве источников которых выступают недра земли, имеют много достоинств. С первых дней использования тепловых насосов вы убедитесь в том, что такие технологии имеют высокий КПД. Поскольку температура грунта в скважинах на протяжении года всегда остаётся неизменной, источник можно считать вечным. Установки не издают шума и обеспечивают помещения тепловой энергией в нужных объемах. Производители грунтовых зондов говорят, что при помощи такого оборудования можно получать электричество своими руками в течение ста лет.

Есть еще несколько важных характеристик, играющих в пользу тепловых насосов:

  • отсутствие необходимости в природном газе;
  • отсутствие вреда окружающей среде;
  • высокий уровень пожарной безопасности;
  • потребность в малом количестве территории.

Теперь вы знаете о том, как выработать электричество в домашних условиях. Владея всей необходимой информацией, можете выбрать наиболее подходящий способ.

Тепловой насос для отопления дома

Если Вам понравился наш сайт или пригодилась информация на этой странице поделитесь ею с друзьями и знакомыми - нажмите одну из кнопок соц сетей внизу страницы или вверху, ведь среди кучи ненужного мусора интернете достаточно сложно найти действительно интересные материалы.

Генератор переменного тока или генератор постоянного тока представляют собой устройство выработки электричества путём преобразования механической энергии.

Как выглядит генератор переменного тока

Как работает генератор переменного тока? Ток генерируется в проводнике под действием магнитного поля. Удобно вырабатывать ток, если вращать прямоугольную электропроводную рамку в неподвижном поле или постоянного магнита внутри её.

При его вращении вокруг оси создаваемого им магнитного поля внутри рамки с угловой скоростью ω, вертикальные стороны контура будут активными, поскольку они пересекаются магнитными линиями. На совпадающие по направлению с магнитным полем горизонтальные стороны нет никакого действия. Поэтому в них ток не индуцируется.

Как выглядит генератор с магнитным ротором

ЭДС в рамке составит:

e = 2 B max lv sin ωt ,

B max – максимальная индукция, Тл;

l – высота рамки, м;

v – скорость рамки, м/с;

t – время, с.

Таким образом, от действия изменяющегося магнитного поля в проводнике индуцируется переменная ЭДС.

Для большого количества витков w , выразив формулу через максимальный поток F m , получим такое выражение:

e = wF m sin ω t .

Принцип работы генератора переменного тока другого типа основан на вращении токопроводящей рамки между двумя постоянными магнитами с противоположными полюсами. Простейший пример приведён на рисунке ниже. Появляющееся в ней напряжение снимается токосъёмными кольцами.

Генератор тока с постоянными магнитами

Применение устройства не очень распространено из-за нагрузки подвижных контактов большим током, проходящим через ротор. Конструкция первого приведённого варианта также их содержит, но через них подаётся значительно меньше постоянного тока через витки вращающегося электромагнита, а основная мощность снимается с неподвижной обмотки статора.

Синхронный генератор

Особенностью устройства является равенство между частотой f , наведённой в статоре ЭДС и частотой оборотов ротора ω :

ω = 60∙ f / p об/мин,

где p – количество пар полюсов в обмотке статора.

Синхронный генератор создаёт в обмотке статора ЭДС, мгновенное значение которой определяется из выражения:

e = 2 π B max lwDn sin ω t,

где l и D – длина и внутренний диаметр сердечника статора.

Синхронный генератор вырабатывает напряжение с синусоидальной характеристикой. При подключении к его выводам С 1 , С 2 , С 3 потребителей, через цепь протекает одно-, или трёхфазный ток, схема ниже.

Схема трехфазного синхронного генератора

От действия изменяющейся электрической нагрузки также изменяется механическая нагрузка. При этом увеличивается или снижается скорость вращения, в результате чего меняются напряжение и частота. Чтобы такое изменение не происходило, электрические характеристики автоматически поддерживают на заданном уровне через обратные связи по напряжению и току на роторной обмотке. Если ротор генератора выполнен из постоянного магнита, он имеет ограниченные возможности стабилизации электрических параметров.

Ротор принудительно приводится во вращение. На его обмотку подаётся индукционный ток. В статоре магнитное поле ротора, вращающееся с той же скоростью, индуцирует 3 переменные ЭДС со сдвигом по фазе.

Основной магнитный поток генератора создаётся от действия постоянного тока, проходящего через обмотку ротора. Питание может поступать от другого источника. Также распространён способ самовозбуждения, когда незначительная часть переменного тока забирается от обмотки статора и проходит через обмотку ротора после предварительного выпрямления. Процесс основан на остаточном магнетизме, которого достаточно для запуска генератора.

Основные устройства, вырабатывающие почти всю электроэнергию в мире – это синхронные гидро-, или турбогенераторы.

Асинхронный генератор

Устройство генератора переменного тока асинхронного типа отличается разницей частоты вращения ЭДС ω и ротора ω r . Она выражается через коэффициент, называемый скольжением:

s = (ω – ω r)/ ω.

В рабочем режиме магнитное поле тормозит вращение якоря и его частота ниже.

Асинхронный двигатель может работать в генераторном режиме, если ω r >ω, когда ток меняет направление и энергия отдаётся обратно в сеть. Здесь электромагнитный момент становится тормозящим. Применение этого свойства распространено при опусканиях грузов или на электротранспорте.

Асинхронный генератор выбирают, когда требования к электрическим параметрам не очень высокие. При наличии пусковых перегрузок предпочтительней будет синхронный генератор.

Устройство автомобильного генератора ничем не отличается от обычного, вырабатывающего электрический ток. Он вырабатывает переменный ток, который затем выпрямляется.

Как выглядит автомобильный генератор

Конструкция состоит из электромагнитного ротора, вращающегося в двух подшипниках с приводом через шкив. Обмотка у него всего одна, с подачей постоянного тока через 2 медных кольца и графитовые щётки.

Электронное реле-регулятор поддерживает стабильное напряжение 12В, не зависящее от скорости вращения.

Схема автомобильного генератора

Ток от АКБ поступает на обмотку ротора через регулятор напряжения. Момент вращения передаётся ему через шкив и в витках обмотки статора индуктируется ЭДС. Генерируемый трёхфазный ток выпрямляется диодами. Поддерживание постоянного выходного напряжения производится регулятором, управляющим током возбуждения.

Когда двигатель увеличивает обороты, ток возбуждения уменьшается, что способствует поддерживанию постоянного выходного напряжения.

Классический генератор

Конструкция содержит двигатель, работающий на жидком топливе, вращающий генератор. Обороты ротора должны быть стабильными, иначе качество выработки электричества снижается. При износе генератора скорость вращения становится ниже, что является существенным недостатком устройства.

Если нагрузка на генератор ниже номинальной, он будет частично работать вхолостую, съедая лишнее топливо.

Поэтому важно при его приобретении сделать точный расчёт требуемой мощности, чтобы он был правильно загружен. Нагрузка ниже 25% запрещается, так как это влияет на его долговечность. В паспортах указаны все возможные режимы работы, которые необходимо соблюдать.

Многие виды классических моделей имеют приемлемые цены, высокую надёжность и большой диапазон мощностей. Важно загружать его как следует и вовремя производить техосмотр. На рисунке ниже представлены модели бензинового и дизельного генераторов.

Классический генератор: а) – бензиновый генератор, б) – дизельный генератор

Дизельный генератор

Генератор приводит в действие двигатель, работающий на дизельном топливе. ДВС состоит из механической части, панели управления, системы подачи топлива, охлаждения и смазки. От мощности ДВС зависит мощность генератора. Если она требуется небольшая, например, на бытовые приборы, целесообразным является применение бензинового генератора. Дизельные генераторы применяются там, где нужна большая мощность.

ДВС применяются в большинстве с верхней установкой клапанов. Они компактней, надёжней, удобны в ремонте, меньше выделяют токсичных отходов.

Генератор предпочитают выбирать с корпусом из металла, поскольку пластик менее долговечный. Устройства без щёток долговечней, а вырабатываемое напряжение более стабильное.

Ёмкость топливного бака обеспечивает работу на одной заправке не более 7 часов. В стационарных установках применяется внешний бак с большим объёмом.

Бензогенератор

В качестве источника механической энергии наиболее распространён четырёхтактный карбюраторный двигатель. Большей частью применяются модели от 1 до 6 кВт. Есть устройства до 10 кВт, способные обеспечить на определённом уровне загородный дом. Цены бензиновых генераторов являются приемлемыми, а ресурс – вполне достаточным, хотя и меньшим, чем у дизельных.

Генератор выбирается в зависимости от нагрузок.

Для больших пусковых токов и при частом применении электросварки лучше использовать синхронный генератор. Если взять асинхронный генератор мощнее, он справится с пусковыми токами. Однако, здесь важно, чтобы он был загружен, иначе бензин будет расходоваться нерационально.

Инверторный генератор

Машины применяются там, где требуется электроэнергия высокого качества. Они могут работать непрерывно или промежутками. Объектами энергопотребления здесь являются учреждения, где не допускаются скачки напряжения.

Основой инверторного генератора является электронный блок, который состоит из выпрямителя, микропроцессора и преобразователя.

Блок-схема инверторного генератора

Выработка электроэнергии начинается так же, как и в классической модели. Сначала вырабатывается переменный ток, который затем выпрямляется и поступает на инвертор, где снова превращается в переменный, с нужными параметрами.

Типы инверторных генераторов отличаются по характеру выходного напряжения:

  • прямоугольный – самый дешёвый, способный питать только электроинструменты;
  • трапецеидальный импульс – подходит для многих приборов, за исключением чувствительной техники (средняя ценовая категория);
  • синусоидальное напряжение – стабильные характеристики, подходящие для всех электроприборов (самая высокая цена).

Достоинства инверторных генераторов:

  • небольшие габариты и вес;
  • малый расход топлива за счёт регулирования выработки количества электроэнергии, которое требуется потребителям в данный момент;
  • возможность кратковременной работы с перегрузкой.

Недостатками являются высокие цены, чувствительность к температурным изменениям электронной части, небольшая мощность. Кроме того, дорого обходится ремонт электронного блока.

Инверторная модель выбирается в следующих случаях:

  • устройство приобретается только в тех случаях, когда обычный генератор не подходит, поскольку цена на него высокая;
  • требуется мощность не более 6 кВт;
  • для постоянного использования лучше подходят классические варианты генераторов;
  • необходимо частично снабжать электроэнергией бытовые приборы;
  • для бытового применения лучше использовать однофазные аппараты.

Видео. Генератор переменного тока.

Генераторы переменного тока способны восполнить электричество в доме при отказе стационарного устройства, а также применяются в любом месте, где необходима подача электроэнергии.

Нет сегодня ни одной области техники, где в том или ином виде не использовалось бы электричество. Между тем, с требованиями к электрическим аппаратам связан род тока, питающего их. И хотя переменный ток распространен нынче по всему миру очень широко, есть тем не менее области, где просто не обойтись без постоянного тока.

Первыми источниками годного к использованию постоянного тока были гальванические элементы, которые принципиально давали химическим путем именно , представляющий собой поток электронов, движущихся в одном неизменном направлении. От этого и название у него «постоянный ток».

Сегодня постоянный ток получают не только от батареек и аккумуляторов, но и путем выпрямления переменного тока. Как раз о том, где и почему используется в наш век постоянный ток, и пойдет речь в данной статье.

Начнем с тяговых двигателей электротранспорта. Метро, троллейбусы, теплоходы и электрички традиционно приводятся в движение двигателями, питаемыми постоянным током. изначально отличались от двигателей тока переменного тем, что в них можно было плавно изменять скорость при сохранении высокого крутящего момента.

Переменное напряжение выпрямляется на тяговой подстанции, после чего подается на контактную сеть, - так получают постоянный ток для общественного электротранспорта. На теплоходах электричество для питания двигателей может быть получено от дизельных генераторов постоянного тока.

В электромобилях так же применяются моторы постоянного тока, которые питаются от аккумулятора, и здесь снова получаем преимущество в виде быстро развиваемого крутящего момента привода, и имеем еще один важный плюс - возможность рекуперативного торможения. В момент торможения мотор превращается в генератор постоянного тока и заряжает .


Мощные подъемные краны на металлургических заводах, где необходимо плавно орудовать огромного размера и чудовищной массы ковшами с расплавленным металлом - используют моторы постоянного тока опять же в силу их отличной регулируемости. Это же преимущество относится к применению моторов постоянного тока в шагающих экскаваторах.


Бесколлекторные двигатели постоянного тока способны развивать огромные скорости вращения, измеряемые десятками и сотнями тысяч оборотов в минуту. Так, высокоскоростные электродвигатели постоянного тока небольших размеров устанавливают на жесткие диски, квадрокоптеры, пылесосы и т. д. Незаменимы они и в качестве шаговых приводов управления различными шасси.


Само по себе прохождение электронов и ионов в одном направлении при постоянном токе делает постоянный ток принципиально незаменимым .

Реакция разложения в электролите, под действием в нем постоянного тока, позволяет осадить на электродах определенные элементы. Так получают алюминий, магний, медь, марганец и другие металлы, а также газы: водород, фтор и т.д, и многие прочие вещества. Благодаря электролизу, то есть по сути - постоянному току, существуют целые отрасли металлургии и химической промышленности.


Гальванотехника немыслима без постоянного тока. Металлы осаждают на поверхность изделий различной формы, таким образом осуществляют в частности хромирование и никелирование, создают печатные формы и металлические монументы. Что и говорить о применении гальванизации в медицине для лечения болезней.


Сварка на постоянном токе гораздо эффективнее, чем на токе переменном, шов получается на много более качественным, чем при сварке того же изделия тем же электродом, но током переменным. Все современные выдают на электрод постоянное напряжение.


Мощные дуговые лампы, устанавливаемые в кинопроекторах многочисленных профессиональных киностудий дают ровный свет без гудящей дуги как раз благодаря питанию дуги постоянным током. Светодиоды, так те принципиально питаются током постоянным, именно поэтому большинство сегодняшних прожекторов питаются постоянным током, хотя и получаемым путем преобразования переменного сетевого тока или же от аккумуляторов (что иногда очень даже удобно).


Двигатель внутреннего сгорания автомобиля хоть и питается бензином, однако стартует он от аккумулятора. И здесь постоянный ток. Стартер получает питание от батареи с напряжением в 12 вольт, и в момент старта забирает от нее ток в десятки ампер.

После старта аккумулятор в автомобиле заряжается генератором, который вырабатывает переменный трехфазный ток, тут же выпрямляемый и подаваемый на клеммы аккумулятора. Переменным током аккумулятор не зарядишь.


А резервные источники питания? Если даже огромная электростанция встала из-за аварии, то и здесь дать старт турбогенераторам помогут вспомогательные аккумуляторы. И самые простые домашние источники бесперебойного питания компьютеров - тоже не обойдутся без аккумуляторов, дающих постоянный ток, из которого путем преобразования в инверторе получается ток переменный. А сигнальные лампы и - почти везде питается от аккумуляторов, то есть и здесь пригодился постоянный ток.


Подводная лодка - и та использует на борту постоянный ток для питания электродвигателя, вращающего гребной винт. Вращение турбогенератора на самых современных атомоходах хотя и достигается путем ядерных реакций, однако электроэнергия подается на двигатель в виде все того же постоянного тока. Это же касается и дизель-электрических субмарин.


И конечно, не только электровозы шахт, погрузчики или электрокары используют постоянный ток от аккумуляторов. Все электронные гаджеты, которые мы носим с собой, содержат литиевые аккумуляторы, которые выдают постоянное напряжение и заряжаются постоянным током от зарядных устройств. А если вспомнить радиосвязь, телевидение, радио- и теле- вещание, интернет и т. д. На самом деле выходит, что добрая часть всех устройств питается прямо или косвенно постоянным током от аккумуляторов.

По десятку раз на дню, включая и выключая свет и пользуясь бытовой техникой, мы даже не задумываемся, откуда берется электричество и какова его природа. Понятно конечно, что по ЛЭП (линия электропередач ) оно поступает от ближайшей электростанции, но это весьма ограниченное представление об окружающем мире. А ведь если выработка электроэнергии во всем мире прекратится хотя бы на пару дней, количество погибших будет измеряться сотнями миллионов.

Как возникает ток?

Из курса физики мы знаем, что:

  • Вся материя состоит из атомов, мельчайших частиц.
  • По орбите вокруг ядра атома вращаются электроны, они имеют отрицательный заряд.
  • В ядре располагаются положительно заряженные протоны.
  • В норме эта система находится в состоянии равновесия.

А вот если хоть один атом потеряет всего один электрон:

  1. Его заряд станет положительным.
  2. Положительно заряженный атом начнет притягивать к себе электрон, из-за разности зарядов.
  3. Чтобы получить для себя недостающий электрон, его придется «сорвать» с чьей-то орбиты.
  4. В результате еще один атом станет положительно заряженным и все повторится, начиная с первого пункта.
  5. Такая цикличность приведет к образованию электрической цепи и линейному распространению тока.

Так что с точки зрения ядерной физики все предельно просто, атом пытается получить то, чего ему больше всего не хватает и таким образом запускает начало реакции .

«Золотой век» электроэнергии

Под свои нужды человек приспособил законы Вселенной относительно недавно. А произошло это примерно два века назад, когда изобретатель по фамилии Вольт разработал первый аккумулятор, способный на длительное время сохранять заряд достаточной мощности.

Попытки использовать ток себе во благо имеют древнюю историю. Археологические раскопки показали, что еще в римских святилищах, а потом и в первых христианских храмах были кустарные «батарейки» из меди, которые давали минимальное напряжение. Такая система подключалась к алтарю или его оградке и как только верующий прикасался к сооружению, он тут же получал «божественную искру ». Скорее это изобретение одного умельца, чем повсеместная практика, но факт любопытный, в любом случае.

Двадцатый век стал периодом расцвета электроэнергии :

  1. Появлялись не только новые виды генераторов и аккумуляторов, но и разрабатывались уникальные концепции добычи этой самой энергии.
  2. Электрические приборы за несколько десятилетий плотно вошли в жизнь каждого человека на планете.
  3. Не осталось стран, кроме наименее развитых, где не были бы построены электростанции и проведены линии электропередач .
  4. Весь дальнейший прогресс опирался на возможности электричества и устройств, которые от него работают.
  5. Эпоха компьютеризации сделала человека зависимым от тока, в прямом смысле этого слова.

Как получить электричество?

Представлять человека в виде наркомана, которому регулярно необходима «живительная доза электричества» немного наивно, но попробуйте полностью обесточить свое жилище и спокойно прожить хотя бы сутки. Отчаянье может заставить вспомнить оригинальные способы добычи тока. На практике это мало кому пригодится, но может кому-то пара Вольт спасет жизнь или поможет произвести впечатление на ребенка:

  • Разрядившийся аккумулятор телефона можно потереть об одежду, подойдут джинсы или шерстяной свитер. Статического электричества надолго не хватит, но это уже хоть что-то.
  • Если рядом есть морская вода , можно налить ее в две банки или стакана, соединить их медным проводом, предварительно обмотав его оба конца фольгой. Конечно для всего этого, помимо соленой воды, понадобятся еще емкости, медь и фольга. Не лучший вариант для экстремальных ситуаций.
  • Куда реалистичнее наличие железного гвоздя и небольшого медного прибора. Два куска металла следует использовать как анод и катод - гвоздь в ближайшее дерево, медь в землю. Между ними натянуть любую нить, незамысловатая конструкция даст примерно один Вольт.
  • Если использовать драгоценные металлы - золото и серебро, получится добиться большего напряжения.

Как экономить электричество?

У экономии электроэнергии могут быть разные причины - желание сохранить экологию, попытка уменьшить ежемесячные счета или что-то другое. Но способы всегда примерно одни:

Не всегда следует себя в чем-то сурово ограничивать, чтобы снизить расходы. Есть еще один неплохой совет - отключайте от сети все приборы, пока вы ими не пользуетесь .

Холодильник, естественно, не в счет. Даже находясь в «ждущем» режиме техника потребляет некоторое количество электричества. Но если хоть на секунду задуматься, то можно прийти к мысли, что почти все приборы большую часть суток вам не нужны. И все это время они продолжают сжигать ваше электричество .

Современные технологии тоже нацелены на то, чтобы снизить общий уровень потребления электроэнергии. Чего стоят хотя бы энергосберегающие лампочки , которые могут уменьшить расходы на освещение помещения, раз так в пять. Совет жить по «солнечным часам» может показаться диким и абсурдным, но уже давно доказано, что искусственное освещение повышает риск развития депрессии.

Как вырабатывается электричество?

Если углубляться в научные детали:

  1. Ток появляется за счет потери атомом электрона.
  2. Положительно заряженный атом притягивает к себе отрицательно заряженные частицы.
  3. Происходит потеря другим атомом своих электронов с орбиты и история повторяется снова.
  4. Это объясняет направленное движение тока и наличие вектора распространения.

А вообще электричество вырабатывается электростанциями . Там либо сжигают топливо, либо используют энергию расщепления атомов, а может даже пускают в ход природные стихии. Речь идет о солнечных батареях, ветряках и ГРЭС.

Полученную механическую или тепловую энергию, за счет генератора, переводят в ток. Он накапливается в аккумуляторах и по ЛЭП поступает в каждый дом.

Сегодня не обязательно знать, откуда берется электричество, чтобы пользоваться всеми благами, которое оно предоставляет. Люди уже давно отошли от первоначальной сути вещей и потихоньку начинают о ней забывать.

Видео: откуда поступает электричество к нам?

В этом видео наглядно будет показан путь электричества от электростанции до нас, откуда оно берется и как поступает в наш дом:

Жизнь современного человека организована таким образом, что ее инфраструктурное обеспечение задействует множество компонентов с разными технико-функциональными свойствами. К таким относится и электроэнергия. Рядовой потребитель не видит и не ощущает, как именно она выполняет свои задачи, но конечный результат вполне заметен в работе бытовой техники, да и не только. При этом вопросы, касающиеся того, откуда берется электричество, в представлении многих пользователей тех же домашних приборов остаются нераскрытыми. Для расширения знаний в этой области стоит начать с понятия об электроэнергии как таковой.

Что такое электричество?

Сложность данного понятия вполне объяснима, так как энергию невозможно обозначить как обычный предмет или явление, доступное визуальному восприятию. При этом существуют два подхода к ответу на вопрос о том, что такое электричество. Определение ученых гласит, что электричество является потоком заряженных частиц, который характеризуется направленным движением. Как правило, под частицами понимаются электроны.

В самой же отрасли энергетики чаще рассматривают электроэнергию как продукт, вырабатываемый подстанциями. С этой точки зрения имеют значение и элементы, которые непосредственно участвуют в процессе формирования и передачи тока. То есть в данном случае рассматривается энергетическое поле, создаваемое вокруг проводника или другого заряженного тела. Чтобы приблизить такое понимание энергии к реальному наблюдению, следует разобраться с таким вопросом: откуда берется электричество? Существуют разные технические средства для производства тока, и все они подчинены одной задаче — снабжению конечных потребителей. Впрочем, до момента, когда пользователи смогут обеспечить свои приборы энергией, она должна пройти несколько этапов.

Выработка электричества

На сегодняшний день в сфере энергетики применяется порядка 10 видов станций, которые обеспечивают генерацию электричества. Это процесс, в результате которого происходит преобразование определенного вида энергии в токовый заряд. Иными словами, электричество формируется в ходе переработки другой энергии. В частности, на специализированных подстанциях используют в качестве основного рабочего ресурса тепловую, ветреную, приливную, геотермальную и другие Отвечая на вопрос относительно того, откуда приходит электричество, стоит отметить инфраструктуру, которой обеспечена каждая подстанция. Любой электрогенератор обеспечен сложной системой функциональных узлов и сетей, которые позволяют аккумулировать вырабатываемую энергию и готовить ее для дальнейшей передачи на узлы распределения.

Традиционные электростанции

Хотя за последние годы тенденции в энергетике меняются быстрыми темпами, можно выделить основные работающих по классическим принципам. В первую очередь это объекты тепловой генерации. Выработка ресурса производится в результате сгорания и последующего преобразования выделяемой При этом существуют разные виды таких станций, в числе которых теплофикационные и конденсационные. Главным отличием между ними является возможность объектов второго типа также генерировать и тепловые потоки. То есть при ответе на вопрос о том, откуда берется электричество, можно отметить и станции, которые параллельно производят и другие виды энергии. Кроме тепловых объектов выработки, достаточно распространены гидро- и атомные станции. В первом случае предполагается от движения воды, а во втором — в результате деления атомов в специальных реакторах.

Альтернативные источники энергии

К данной категории источников энергии принято относить солнечные лучи, ветер, земельные недра и т. д. Особенно распространены различные генераторы, ориентированные на аккумуляцию и преобразование в электричество солнечной энергии. Подобные установки привлекательны тем, что их может использовать любой потребитель в объемах, требуемых для снабжения его дома. Впрочем, широкому распространению подобных генераторов мешает высокая стоимость оборудования, а также нюансы в эксплуатации, обусловленные зависимостью рабочих фотоэлементов от

На уровне крупных энергетических компаний активно развиваются ветряные альтернативные источники электричества. Уже сегодня целый ряд стран использует программы постепенного перехода на этот вид энергообеспечения. Впрочем, и в данном направлении есть свои препятствия, обусловленные маломощностью генераторов при высокой стоимости. Относительно новым альтернативным источником энергии является естественное тепло Земли. В данном случае станции преобразуют тепловую энергию, полученную из глубин подземных каналов.

Распределение электроэнергии

После выработки электроэнергии начинается этап ее передачи и распределения, который обеспечивается энергосбытовыми компаниями. Поставщики ресурса организуют соответствующую инфраструктуру, основу которой составляют электрические сети. Существует два вида каналов, по которым реализуется передача электричества, — воздушные и подземные кабельные линии. Данные сети являются конечным источником и главным ответом на вопрос о том, откуда берется электричество для разных нужд пользователей. Организации-поставщики прокладывают специальные трассы для распределения электроэнергии, используя при этом разные виды кабелей.

Потребители электричества

Электроэнергия требуется для самых разных задач как в бытовом хозяйстве, так и в промышленном секторе. Классическим примером использования данного носителя энергии является освещение. Однако в наши дни электричество в доме служит для обеспечения работы более широкого спектра приборов и оборудования. И это лишь небольшая часть потребностей общества в энергоснабжении.

Данный ресурс также требуется для поддержания работы транспортной инфраструктуры: для обслуживания линий троллейбусов, трамваев и метро и т. д. Отдельно стоит отметить промышленные предприятия. Заводы, комбинаты и перерабатывающие комплексы зачастую требуют подключения огромных мощностей. Можно сказать, это самые крупные потребители электроэнергии, использующие данный ресурс для обеспечения работы технологического оборудования и местной инфраструктуры.

Управление объектами электроэнергетики

Помимо организации электросетевого хозяйства, которое технически обеспечивает возможность передачи и распределения энергии для конечных потребителей, работа данного комплекса невозможна без систем управления. Для реализации этих задач поставщики используют оперативно-диспетчерские пункты, сотрудники которых реализуют централизованный контроль и управление работой вверенных им объектов электроэнергетики. В частности, подобные службы контролируют параметры сетей, к которым подключаются потребители электроэнергии на разных уровнях. Отдельно стоит отметить и отделы которые выполняют техобслуживание сетей, предотвращая износы и восстанавливая повреждения на отдельных участках линий.

Заключение

За все время существования энергетическая отрасль претерпела несколько этапов своего развития. В последнее время наблюдаются новые перемены, обусловленные активным освоением альтернативных источников энергии. Успешное развитие этих направлений уже сегодня дает возможность использовать электричество в доме, полученное от индивидуальных бытовых генераторов независимо от центральных сетей. Впрочем, и в этих отраслях есть определенные сложности. В первую очередь они связаны с финансовыми затратами на закупку и монтаж соответствующего оборудования — тех же солнечных панелей с аккумуляторами. Но поскольку энергия, вырабатываемая от альтернативных источников, является полностью бесплатной, то перспективы дальнейшего продвижения этих областей сохраняют актуальность для разных категорий потребителей.





error: Контент защищен !!